Vitamin K is an essential vitamin. It is one of the four fat-soluble vitamins, along with vitamin A, vitamin D, and vitamin E. It is found in plants or produced from intestinal bacteria. It plays an essential role in bone health and regulates blood clotting.

  • Origin: Plant Based, Animal Product, Synthetic
  • Source: Dark Green Vegetables, Intestinal Bacteria
  • Type: Vitamin
  • Age Range: Adults
  • Outcomes: Bone and Joint Health, Bone Density

What are Vitamin K benefits?

Vitamin K is one of the vitamins essential for the functioning and development of the body and is usually found in plants or produced from intestinal bacteria. It is worth noting that the intake of vitamin K has several benefits for the body, particularly blood clotting (clotting is a process that helps prevent excessive bleeding inside and outside the body). Other benefits of vitamin K consumption include improved bone health development as well as cardiovascular health, reduced calcification and stiffening of arteries, regulation of insulin sensitivity, reduced risk of cancer as well as skin redness, and anti-aging treatment.

Table of relations

Consistent effects
Strength of effects
Scientific articles

Bone and Joint Health Vitamin K and Bone and Joint Health

Bone and joint health are deeply affected by vitamins, hormones and minerals, such as calcium, vitamin D and thyroid hormones. Supplements that affect bone and joint health help their structure and strength, in addition to contributing to the healthy balance of involved nutraceuticals.
  • Bone Density

    Bone density or bone mineral density (BMD) is the amount of bone mineral in bone tissue. The measurement of bone mineral density is used in medicine as an indirect indicator of osteoporosis and risk of fractures.

Table of negative interactions

Anisindione, Cholestyramine, Colesevelam, Colestipol, Dicumarol, Mineral Oil, Orlistat, Sevelamer, Warfarin
Crucifers, Mustard

Related videos about Vitamin K


  1. a b Mitsuishi T, et al. The effects of topical application of phytonadione, retinol and vitamins C and E on infraorbital dark circles and wrinkles of the lower eyelidsJ Cosmet Dermatol. (2004)
  2. a b c d Ferland G. The discovery of vitamin K and its clinical applicationsAnn Nutr Metab. (2012)
  3. ^ The occurrence and chemical nature of vitamin K.
  4. ^ Treatment of the hemorrhagic tendency in jaundice; with special reference to vitamin k.
  5. ^ Vitamin K as a prophylactic in 13,000 infants.
  6. ^ Hemorrhagic Sweet Clover Disease, Dicumarol, and Warfarin: the Work of Karl Paul Link.
  7. a b c Trumbo P, et al. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zincJ Am Diet Assoc. (2001)
  8. a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj Shearer MJ, Bach A, Kohlmeier M. Chemistry, nutritional sources, tissue distribution and metabolism of vitamin K with special reference to bone healthJ Nutr. (1996)
  9. a b c Booth SL, Pennington JA, Sadowski JA. Food sources and dietary intakes of vitamin K-1 (phylloquinone) in the American diet: data from the FDA Total Diet StudyJ Am Diet Assoc. (1996)
  10. a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab Kamao M, et al. Vitamin K content of foods and dietary vitamin K intake in Japanese young womenJ Nutr Sci Vitaminol (Tokyo). (2007)
  11. a b c Thijssen HH, Drittij-Reijnders MJ. Vitamin K distribution in rat tissues: dietary phylloquinone is a source of tissue menaquinone-4Br J Nutr. (1994)
  12. a b c d Sato T, Schurgers LJ, Uenishi K. Comparison of menaquinone-4 and menaquinone-7 bioavailability in healthy womenNutr J. (2012)
  13. a b c Geleijnse JM, et al. Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam StudyJ Nutr. (2004)
  14. ^ Thane CW, Wang LY, Coward WA. Plasma phylloquinone (vitamin K1) concentration and its relationship to intake in British adults aged 19-64 yearsBr J Nutr. (2006)
  15. a b c Mummah-Schendel LL, Suttie JW. Serum phylloquinone concentrations in a normal adult populationAm J Clin Nutr. (1986)
  16. a b c d e Novotny JA, et al. Vitamin K absorption and kinetics in human subjects after consumption of 13C-labelled phylloquinone from kaleBr J Nutr. (2010)
  17. a b c d Garber AK, et al. Comparison of phylloquinone bioavailability from food sources or a supplement in human subjectsJ Nutr. (1999)
  18. a b Jones KS, et al. The effect of different meals on the absorption of stable isotope-labelled phylloquinoneBr J Nutr. (2009)
  19. a b c Booth SL, Lichtenstein AH, Dallal GE. Phylloquinone absorption from phylloquinone-fortified oil is greater than from a vegetable in younger and older men and womenJ Nutr. (2002)
  20. ^ Shea MK, et al. Genetic and non-genetic correlates of vitamins K and DEur J Clin Nutr. (2009)
  21. ^ Booth SL, Al Rajabi A. Determinants of vitamin K status in humansVitam Horm. (2008)
  22. a b Dreher ML. Pistachio nuts: composition and potential health benefitsNutr Rev. (2012)
  23. a b Bolling BW, McKay DL, Blumberg JB. The phytochemical composition and antioxidant actions of tree nutsAsia Pac J Clin Nutr. (2010)
  24. ^ Sakamaki N, et al. Determination of vitamin K in aojiru (green juice) products by HPLCShokuhin Eiseigaku Zasshi. (2006)
  25. ^ Bolton-Smith C, et al. Compilation of a provisional UK database for the phylloquinone (vitamin K1) content of foodsBr J Nutr. (2000)
  26. ^ Lester GE, Hallman GJ, Pérez JA. gamma-Irradiation dose: effects on baby-leaf spinach ascorbic acid, carotenoids, folate, alpha-tocopherol, and phylloquinone concentrationsJ Agric Food Chem. (2010)
  27. ^ Lippi G, et al. Comment on effects of microwave cooking conditions on bioactive compounds present in broccoli inflorescencesJ Agric Food Chem. (2008)
  28. ^ Homma K, et al. Treatment of natto, a fermented soybean preparation, to prevent excessive plasma vitamin K concentrations in patients taking warfarinJ Nutr Sci Vitaminol (Tokyo). (2006)
  29. a b c Usui Y, et al. Measurement of vitamin K in human liver by gradient elution high-performance liquid chromatography using platinum-black catalyst reduction and fluorimetric detectionJ Chromatogr. (1989)
  30. a b Shino M. Determination of endogenous vitamin K (phylloquinone and menaquinone-n) in plasma by high-performance liquid chromatography using platinum oxide catalyst reduction and fluorescence detectionAnalyst. (1988)
  31. a b c d e Schurgers LJ, Vermeer C. Determination of phylloquinone and menaquinones in food. Effect of food matrix on circulating vitamin K concentrationsHaemostasis. (2000)
  32. ^ Suttie JW. Mechanism of action of vitamin K: synthesis of gamma-carboxyglutamic acidCRC Crit Rev Biochem. (1980)
  33. ^ Burnier JP, et al. Gamma-carboxyglutamic acidMol Cell Biochem. (1981)
  34. a b Dowd P, et al. Mechanism of action of vitamin KNat Prod Rep. (1994)
  35. ^ Oldenburg J, et al. The vitamin K cycleVitam Horm. (2008)
  36. ^ Esmon CT, Suttie JW, Jackson CM. The functional significance of vitamin K action. Difference in phospholipid binding between normal and abnormal prothrombinJ Biol Chem. (1975)
  37. ^ Vitamin K-dependent carboxylase: evidence for a hydroperoxide intermediate in the reaction.
  38. a b c Buchthal SD, Bell RG. Vitamin K dependent carboxylation of glutamate residues to gamma-carboxyglutamate in microsomes from spleen and testes: comparison with liver, lung, and kidneyBiochemistry. (1983)
  39. ^ Gilbert KA, Rannels SR. Glucocorticoid effects on vitamin K-dependent carboxylase activity and matrix Gla protein expression in rat lungAm J Physiol Lung Cell Mol Physiol. (2003)
  40. ^ Lian JB, Friedman PA. The vitamin K-dependent synthesis of gamma-carboxyglutamic acid by bone microsomesJ Biol Chem. (1978)
  41. ^ Traverso HP, Hauschka PV, Gallop PM. Vitamin K-dependent gamma-carboxyglutamic acid formation by mouse renal adenocarcinoma cells (RAG)Calcif Tissue Int. (1980)
  42. ^ Nakao M, et al. Synthesis of human osteocalcins: gamma-carboxyglutamic acid at position 17 is essential for a calcium-dependent conformational transitionPept Res. (1994)
  43. ^ Cairns JR, Price PA. Direct demonstration that the vitamin K-dependent bone Gla protein is incompletely gamma-carboxylated in humansJ Bone Miner Res. (1994)
  44. a b c d e Vitamin K nutrition and osteoporosis.
  45. a b c d e Hauschka PV, et al. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bonePhysiol Rev. (1989)
  46. a b c d e f g Theuwissen E, Smit E, Vermeer C. The role of vitamin K in soft-tissue calcificationAdv Nutr. (2012)
  47. ^ Neve A, Corrado A, Cantatore FP. Osteocalcin: skeletal and extra-skeletal effectsJ Cell Physiol. (2013)
  48. a b c d e f Ferron M, et al. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type miceProc Natl Acad Sci U S A. (2008)
  49. a b c d e f g h i Lee NK, et al. Endocrine regulation of energy metabolism by the skeletonCell. (2007)
  50. a b c d e f g h Binkley NC, et al. A high phylloquinone intake is required to achieve maximal osteocalcin gamma-carboxylationAm J Clin Nutr. (2002)
  51. a b c d e f g Dalmeijer GW, et al. The effect of menaquinone-7 supplementation on circulating species of matrix Gla proteinAtherosclerosis. (2012)
  52. ^ Booth SL, et al. Dietary phylloquinone depletion and repletion in older womenJ Nutr. (2003)
  53. ^ van Dam-Mieras MC, Hemker HC. Half-life time and control frequency of vitamin K-dependent Coagulation factors. Theoretical considerations on the place of factor VII in the control of oral anticoagulation therapyHaemostasis. (1983)
  54. ^ Nemerson Y. Regulation of the initiation of coagulation by factor VIIHaemostasis. (1983)
  55. ^ Schafer C, et al. The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcificationJ Clin Invest. (2003)
  56. ^ Viegas CS, et al. Gla-rich protein (GRP), a new vitamin K-dependent protein identified from sturgeon cartilage and highly conserved in vertebratesJ Biol Chem. (2008)
  57. ^ Hepner M, Karlaftis V. Protein SMethods Mol Biol. (2013)
  58. a b c d e f g h i Li J, et al. Novel role of vitamin k in preventing oxidative injury to developing oligodendrocytes and neuronsJ Neurosci. (2003)
  59. ^ Hepner M, Karlaftis V. Protein CMethods Mol Biol. (2013)
  60. ^ Tanabe K, et al. Roles of gamma-carboxylation and a sex hormone-binding globulin-like domain in receptor-binding and in biological activities of Gas6FEBS Lett. (1997)
  61. ^ Nakano T, et al. Cell adhesion to phosphatidylserine mediated by a product of growth arrest-specific gene 6J Biol Chem. (1997)
  62. a b Varnum BC, et al. Axl receptor tyrosine kinase stimulated by the vitamin K-dependent protein encoded by growth-arrest-specific gene 6Nature. (1995)
  63. a b c Manfioletti G, et al. The protein encoded by a growth arrest-specific gene (gas6) is a new member of the vitamin K-dependent proteins related to protein S, a negative coregulator in the blood coagulation cascadeMol Cell Biol. (1993)
  64. a b c Prieto AL, et al. Gas6, a ligand for the receptor protein-tyrosine kinase Tyro-3, is widely expressed in the central nervous systemBrain Res. (1999)
  65. a b Hamilton DW. Functional role of periostin in development and wound repair: implications for connective tissue diseaseJ Cell Commun Signal. (2008)
  66. ^ Coutu DL, et al. Periostin, a member of a novel family of vitamin K-dependent proteins, is expressed by mesenchymal stromal cellsJ Biol Chem. (2008)
  67. ^ Shiraishi H, et al. Periostin contributes to the pathogenesis of atopic dermatitis by inducing TSLP production from keratinocytesAllergol Int. (2012)
  68. ^ Masuoka M, et al. Periostin promotes chronic allergic inflammation in response to Th2 cytokinesJ Clin Invest. (2012)
  69. ^ Romanos GE, et al. Periostin: Role in formation and maintenance of dental tissuesJ Cell Physiol. (2013)
  70. a b Hoshi K, et al. Nuclear vitamin K2 binding protein in human osteoblasts: homologue to glyceraldehyde-3-phosphate dehydrogenaseBiochem Pharmacol. (1999)
  71. a b c Hara K, et al. The inhibitory effect of vitamin K2 (menatetrenone) on bone resorption may be related to its side chainBone. (1995)
  72. a b c d Taira H, et al. Menatetrenone (vitamin K2) acts directly on circulating human osteoclast precursorsCalcif Tissue Int. (2003)
  73. ^ Kameda T, et al. Vitamin K2 inhibits osteoclastic bone resorption by inducing osteoclast apoptosisBiochem Biophys Res Commun. (1996)
  74. a b c d e Koshihara Y, Hoshi K. Vitamin K2 enhances osteocalcin accumulation in the extracellular matrix of human osteoblasts in vitroJ Bone Miner Res. (1997)
  75. ^ Koshihara Y, Hoshi K, Shiraki M. Vitamin K2 (menatetrenone) inhibits prostaglandin synthesis in cultured human osteoblast-like periosteal cells by inhibiting prostaglandin H synthase activityBiochem Pharmacol. (1993)
  76. ^ Denisova NA, Booth SL. Vitamin K and sphingolipid metabolism: evidence to dateNutr Rev. (2005)
  77. a b Tabb MM, et al. Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXRJ Biol Chem. (2003)
  78. a b c Igarashi M, et al. Vitamin K induces osteoblast differentiation through pregnane X receptor-mediated transcriptional control of the Msx2 geneMol Cell Biol. (2007)
  79. ^ Frick PG, Riedler G, Brögli H. Dose response and minimal daily requirement for vitamin K in manJ Appl Physiol. (1967)
  80. a b c Suttie JW, et al. Vitamin K deficiency from dietary vitamin K restriction in humansAm J Clin Nutr. (1988)
  81. ^ Commission Directive 2008/100/EC.
  82. ^ Dietary Intake and Adequacy of Vitamin K.
  83. a b c d e f g Shearer MJ, Fu X, Booth SL. Vitamin K nutrition, metabolism, and requirements: current concepts and future researchAdv Nutr. (2012)
  84. ^ Matthys C, et al. EURRECA: development of tools to improve the alignment of micronutrient recommendationsEur J Clin Nutr. (2010)
  85. a b c Binkley NC, et al. Vitamin K supplementation reduces serum concentrations of under-gamma-carboxylated osteocalcin in healthy young and elderly adultsAm J Clin Nutr. (2000)
  86. ^ Knapen MH, et al. Vitamin K-induced changes in markers for osteoblast activity and urinary calcium lossCalcif Tissue Int. (1993)
  87. ^ Knapen MH, Hamulyák K, Vermeer C. The effect of vitamin K supplementation on circulating osteocalcin (bone Gla protein) and urinary calcium excretionAnn Intern Med. (1989)
  88. ^ Vergnaud P, et al. Undercarboxylated osteocalcin measured with a specific immunoassay predicts hip fracture in elderly women: the EPIDOS StudyJ Clin Endocrinol Metab. (1997)
  89. a b Szulc P, et al. Serum undercarboxylated osteocalcin correlates with hip bone mineral density in elderly womenJ Bone Miner Res. (1994)
  90. a b Szulc P, et al. Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture in elderly womenJ Clin Invest. (1993)
  91. ^ Szulc P, et al. Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture: a three year follow-up studyBone. (1996)
  92. ^ Harrington DJ, et al. Excretion of the urinary 5C- and 7C-aglycone metabolites of vitamin K by young adults responds to changes in dietary phylloquinone and dihydrophylloquinone intakesJ Nutr. (2007)
  93. a b Shearer MJ. Vitamin K deficiency bleeding (VKDB) in early infancyBlood Rev. (2009)
  94. ^ Puckett RM, Offringa M. Prophylactic vitamin K for vitamin K deficiency bleeding in neonatesCochrane Database Syst Rev. (2000)
  95. ^ Cocchetto DM, et al. Behavioral perturbations in the vitamin K-deficient ratPhysiol Behav. (1985)
  96. ^ Vitamin K, an example of triage theory: is micronutrient inadequacy linked to diseases of aging?.
  97. a b c d Cranenburg EC, et al. Characterisation and potential diagnostic value of circulating matrix Gla protein (MGP) speciesThromb Haemost. (2010)
  98. a b c Fusaro M, et al. Vitamin K, vertebral fractures, vascular calcifications, and mortality: VItamin K Italian (VIKI) dialysis studyJ Bone Miner Res. (2012)
  99. a b Westenfeld R, et al. Effect of vitamin K2 supplementation on functional vitamin K deficiency in hemodialysis patients: a randomized trialAm J Kidney Dis. (2012)
  100. a b Hussaini SH, Ahmed S, Heatley RV. Celiac disease and hypoprothrombinemiaNutrition. (1999)
  101. a b Schoon EJ, et al. Low serum and bone vitamin K status in patients with longstanding Crohn’s disease: another pathogenetic factor of osteoporosis in Crohn’s diseaseGut. (2001)
  102. ^ Kuwabara A, et al. High prevalence of vitamin K and D deficiency and decreased BMD in inflammatory bowel diseaseOsteoporos Int. (2009)
  103. ^ Iijima H, Shinzaki S, Takehara T. The importance of vitamins D and K for the bone health and immune function in inflammatory bowel diseaseCurr Opin Clin Nutr Metab Care. (2012)
  104. ^ Booth SL. Vitamin K status in the elderlyCurr Opin Clin Nutr Metab Care. (2007)
  105. a b Presse N, et al. Low vitamin K intakes in community-dwelling elders at an early stage of Alzheimer’s diseaseJ Am Diet Assoc. (2008)
  106. a b Misra D, et al. Vitamin K deficiency is associated with incident knee osteoarthritisAm J Med. (2013)
  107. ^ Weber P. The role of vitamins in the prevention of osteoporosis–a brief status reportInt J Vitam Nutr Res. (1999)
  108. a b Booth SL, et al. Dietary vitamin K intakes are associated with hip fracture but not with bone mineral density in elderly men and womenAm J Clin Nutr. (2000)
  109. a b c Feskanich D, et al. Vitamin K intake and hip fractures in women: a prospective studyAm J Clin Nutr. (1999)
  110. ^ Ueland T, et al. Undercarboxylated matrix Gla protein is associated with indices of heart failure and mortality in symptomatic aortic stenosisJ Intern Med. (2010)
  111. ^ Ueland T, et al. Circulating levels of non-phosphorylated undercarboxylated matrix Gla protein are associated with disease severity in patients with chronic heart failureClin Sci (Lond). (2011)
  112. a b Booth SL, et al. Vitamin K intake and bone mineral density in women and menAm J Clin Nutr. (2003)
  113. ^ Caraballo PJ, et al. Long-term use of oral anticoagulants and the risk of fractureArch Intern Med. (1999)
  114. ^ Caraballo PJ, et al. Changes in bone density after exposure to oral anticoagulants: a meta-analysisOsteoporos Int. (1999)
  115. ^ Jamal SA, et al. Warfarin use and risk for osteoporosis in elderly women. Study of Osteoporotic Fractures Research GroupAnn Intern Med. (1998)
  116. ^ Rosen HN, et al. Vitamin K and maintenance of skeletal integrity in adultsAm J Med. (1993)
  117. ^ Naraki T, et al. gamma-Carboxyglutamic acid content of hepatocellular carcinoma-associated des-gamma-carboxy prothrombinBiochim Biophys Acta. (2002)
  118. ^ Bach AU, et al. Assessment of vitamin K status in human subjects administered “minidose” warfarinAm J Clin Nutr. (1996)
  119. a b Gundberg CM, Lian JB, Booth SL. Vitamin K-dependent carboxylation of osteocalcin: friend or foeAdv Nutr. (2012)
  120. a b c d Sokoll LJ, et al. Changes in serum osteocalcin, plasma phylloquinone, and urinary gamma-carboxyglutamic acid in response to altered intakes of dietary phylloquinone in human subjectsAm J Clin Nutr. (1997)
  121. ^ Price PA, Williamson MK. Effects of warfarin on bone. Studies on the vitamin K-dependent protein of rat boneJ Biol Chem. (1981)
  122. a b c d e Shiraki M, et al. Vitamin K2 (menatetrenone) effectively prevents fractures and sustains lumbar bone mineral density in osteoporosisJ Bone Miner Res. (2000)
  123. a b c d e f g Thijssen HH, Drittij-Reijnders MJ, Fischer MA. Phylloquinone and menaquinone-4 distribution in rats: synthesis rather than uptake determines menaquinone-4 organ concentrationsJ Nutr. (1996)
  124. a b c d e Ito A, et al. Menaquinone-4 enhances testosterone production in rats and testis-derived tumor cellsLipids Health Dis. (2011)
  125. a b Koitaya N, et al. Low-dose vitamin K2 (MK-4) supplementation for 12 months improves bone metabolism and prevents forearm bone loss in postmenopausal Japanese womenJ Bone Miner Metab. (2013)
  126. a b c Ozuru R, et al. Time-dependent effects of vitamin K2 (menatetrenone) on bone metabolism in postmenopausal womenEndocr J. (2002)
  127. a b c d Iwamoto I, et al. A longitudinal study of the effect of vitamin K2 on bone mineral density in postmenopausal women a comparative study with vitamin D3 and estrogen-progestin therapyMaturitas. (1999)
  128. ^ Sell S. Stem cell origin of cancer and differentiation therapyCrit Rev Oncol Hematol. (2004)
  129. ^ Sakai I, et al. Novel role of vitamin K2: a potent inducer of differentiation of various human myeloid leukemia cell linesBiochem Biophys Res Commun. (1994)
  130. ^ Booth SL. Roles for vitamin K beyond coagulationAnnu Rev Nutr. (2009)
  131. a b c d Shearer MJ, Newman P. Metabolism and cell biology of vitamin KThromb Haemost. (2008)
  132. a b c d e f g Schurgers LJ, et al. Vitamin K-containing dietary supplements: comparison of synthetic vitamin K1 and natto-derived menaquinone-7Blood. (2007)
  133. a b c d Theuwissen E, et al. Low-dose menaquinone-7 supplementation improved extra-hepatic vitamin K status, but had no effect on thrombin generation in healthy subjectsBr J Nutr. (2012)
  134. ^ Brugè F, et al. Olive oil supplemented with menaquinone-7 significantly affects osteocalcin carboxylationBr J Nutr. (2011)
  135. a b Groenen-van Dooren MM, et al. Bioavailability of phylloquinone and menaquinones after oral and colorectal administration in vitamin K-deficient ratsBiochem Pharmacol. (1995)
  136. ^ Sato T, et al. Difference in the metabolism of vitamin K between liver and bone in vitamin K-deficient ratsBr J Nutr. (2002)
  137. ^ Okano T, et al. Conversion of phylloquinone (Vitamin K1) into menaquinone-4 (Vitamin K2) in mice: two possible routes for menaquinone-4 accumulation in cerebra of miceJ Biol Chem. (2008)
  138. a b Thijssen HH, et al. Menadione is a metabolite of oral vitamin KBr J Nutr. (2006)
  139. ^ Chawla D, et al. Vitamin K1 versus vitamin K3 for prevention of subclinical vitamin deficiency: a randomized controlled trialIndian Pediatr. (2007)
  140. a b Metabolism of vitamin K1 (phylloquinone) in man.
  141. a b Blomstrand R, Forsgren L. Vitamin K1-3H in man. Its intestinal absorption and transport in the thoracic duct lymphInt Z Vitaminforsch. (1968)
  142. a b Shearer MJ, Barkhan P, Webster GR. Absorption and excretion of an oral dose of tritiated vitamin K1 in manBr J Haematol. (1970)
  143. ^ Intestinal Fatty acid Absorption.
  144. a b Koivu-Tikkanen TJ, et al. Intestinal, hepatic, and circulating vitamin K levels at low and high intakes of vitamin K in ratsBr J Nutr. (2000)
  145. a b c d e Gijsbers BL, Jie KS, Vermeer C. Effect of food composition on vitamin K absorption in human volunteersBr J Nutr. (1996)
  146. ^ Booth SL, et al. Response of vitamin K status to different intakes and sources of phylloquinone-rich foods: comparison of younger and older adultsAm J Clin Nutr. (1999)
  147. a b Shearer MJ, McBurney A, Barkhan P. Studies on the absorption and metabolism of phylloquinone (vitamin K1) in manVitam Horm. (1974)
  148. ^ Furt F, et al. A bimodular oxidoreductase mediates the specific reduction of phylloquinone (vitamin K₁) in chloroplastsPlant J. (2010)
  149. ^ Eugeni Piller L, et al. Plastid lipid droplets at the crossroads of prenylquinone metabolismJ Exp Bot. (2012)
  150. a b c d e f g h i j k Schurgers LJ, Vermeer C. Differential lipoprotein transport pathways of K-vitamins in healthy subjectsBiochim Biophys Acta. (2002)
  151. ^ Cooper AD. Hepatic uptake of chylomicron remnantsJ Lipid Res. (1997)
  152. ^ Shearer MJ, et al. Clearance from plasma and excretion in urine, faeces and bile of an intravenous dose of tritiated vitamin K 1 in manBr J Haematol. (1972)
  153. a b c d Lamon-Fava S, et al. Plasma lipoproteins as carriers of phylloquinone (vitamin K1) in humansAm J Clin Nutr. (1998)
  154. a b c d Erkkilä AT, et al. Plasma transport of vitamin K in men using deuterium-labeled collard greensMetabolism. (2004)
  155. a b Spronk HM, et al. Tissue-specific utilization of menaquinone-4 results in the prevention of arterial calcification in warfarin-treated ratsJ Vasc Res. (2003)
  156. a b Price PA, Faus SA, Williamson MK. Warfarin causes rapid calcification of the elastic lamellae in rat arteries and heart valvesArterioscler Thromb Vasc Biol. (1998)
  157. ^ Dolnikowski GG, et al. HPLC and GC/MS determination of deuterated vitamin K (phylloquinone) in human serum after ingestion of deuterium-labeled broccoliJ Nutr Biochem. (2002)
  158. ^ Kurilich AC, et al. Isotopic labeling and LC-APCI-MS quantification for investigating absorption of carotenoids and phylloquinone from kale (Brassica oleracea)J Agric Food Chem. (2003)
  159. ^ Fu X, et al. Measurement of deuterium-labeled phylloquinone in plasma by high-performance liquid chromatography/mass spectrometryAnal Chem. (2009)
  160. a b c Newman P, et al. The uptake of lipoprotein-borne phylloquinone (vitamin K1) by osteoblasts and osteoblast-like cells: role of heparan sulfate proteoglycans and apolipoprotein EJ Bone Miner Res. (2002)
  161. ^ Niemeier A, et al. Expression of LRP1 by human osteoblasts: a mechanism for the delivery of lipoproteins and vitamin K1 to boneJ Bone Miner Res. (2005)
  162. ^ Weintraub MS, Eisenberg S, Breslow JL. Dietary fat clearance in normal subjects is regulated by genetic variation in apolipoprotein EJ Clin Invest. (1987)
  163. a b c Saupe J, Shearer MJ, Kohlmeier M. Phylloquinone transport and its influence on gamma-carboxyglutamate residues of osteocalcin in patients on maintenance hemodialysisAm J Clin Nutr. (1993)
  164. a b c Yan L, et al. Effect of apolipoprotein E genotype on vitamin K status in healthy older adults from China and the UKBr J Nutr. (2005)
  165. ^ Pilkey RM, et al. Subclinical vitamin K deficiency in hemodialysis patientsAm J Kidney Dis. (2007)
  166. ^ Apolipoprotein E genotype is a determinant of serum vitamin K, but not BMD, in older men and women.
  167. ^ Hussain MM, et al. Chylomicron-chylomicron remnant clearance by liver and bone marrow in rabbits. Factors that modify tissue-specific uptakeJ Biol Chem. (1989)
  168. ^ Hussain MM, et al. Uptake of chylomicrons by the liver, but not by the bone marrow, is modulated by lipoprotein lipase activityArterioscler Thromb Vasc Biol. (1997)
  169. ^ Hussain MM, et al. Chylomicron metabolism. Chylomicron uptake by bone marrow in different animal speciesJ Biol Chem. (1989)
  170. a b Niemeier A, et al. Uptake of postprandial lipoproteins into bone in vivo: impact on osteoblast functionBone. (2008)
  171. ^ Kohlmeier M, et al. Transport of vitamin K to bone in humansJ Nutr. (1996)
  172. ^ Conly JM, Stein K. The production of menaquinones (vitamin K2) by intestinal bacteria and their role in maintaining coagulation homeostasisProg Food Nutr Sci. (1992)
  173. ^ Production of Menaquinones by Intestinal Anaerobes.
  174. ^ Conly JM, Stein KE. The absorption and bioactivity of bacterially synthesized menaquinonesClin Invest Med. (1993)
  175. ^ Ichihashi T, et al. Colonic absorption of menaquinone-4 and menaquinone-9 in ratsJ Nutr. (1992)
  176. ^ Distribution of bile acids in rats.
  177. ^ Suttie JW. The importance of menaquinones in human nutritionAnnu Rev Nutr. (1995)
  178. a b Ronden JE, et al. Intestinal flora is not an intermediate in the phylloquinone-menaquinone-4 conversion in the ratBiochim Biophys Acta. (1998)
  179. a b Nakagawa K, et al. Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzymeNature. (2010)
  180. ^ McBurney A, Shearer MJ, Barkhan P. Preparative isolation and characterization of the urinary aglycones of vitamin K1 (phylloquinone in manBiochem Med. (1980)
  181. ^ McDonald MG, et al. CYP4F2 is a vitamin K1 oxidase: An explanation for altered warfarin dose in carriers of the V433M variantMol Pharmacol. (2009)
  182. a b c Cohen JL, Bhatia AC. The role of topical vitamin K oxide gel in the resolution of postprocedural purpuraJ Drugs Dermatol. (2009)
  183. a b Shah NS, et al. The effects of topical vitamin K on bruising after laser treatmentJ Am Acad Dermatol. (2002)
  184. a b c Lopes LB, Speretta FF, Bentley MV. Enhancement of skin penetration of vitamin K using monoolein-based liquid crystalline systemsEur J Pharm Sci. (2007)
  185. ^ Lopes LB, et al. Reverse hexagonal phase nanodispersion of monoolein and oleic acid for topical delivery of peptides: in vitro and in vivo skin penetration of cyclosporin APharm Res. (2006)
  186. ^ Lopes LB, Collett JH, Bentley MV. Topical delivery of cyclosporin A: an in vitro study using monoolein as a penetration enhancerEur J Pharm Biopharm. (2005)
  187. ^ Reedstrom CK, Suttie JW. Comparative distribution, metabolism, and utilization of phylloquinone and menaquinone-9 in rat liverProc Soc Exp Biol Med. (1995)
  188. a b c d Vos M, et al. Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiencyScience. (2012)
  189. ^ Bhalerao S, Clandinin TR. Cell biology. Vitamin K2 takes chargeScience. (2012)
  190. a b c d PARMAR SS, LOWENTHAL J. Oxidative phosphorylation in mitochondria from animals treated with 2-chloro-3-phytyl-1,4-naphthoquinone, an antagonist of vitamin K-1Biochem Biophys Res Commun. (1962)
  191. ^ Suvarna K, et al. Menaquinone (vitamin K2) biosynthesis: localization and characterization of the menA gene from Escherichia coliJ Bacteriol. (1998)
  192. ^ Clark IE, et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkinNature. (2006)
  193. ^ Park J, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkinNature. (2006)
  194. a b Huber AM, et al. Tissue phylloquinone and menaquinones in rats are affected by age and genderJ Nutr. (1999)
  195. a b c d e f Carrié I, et al. Menaquinone-4 concentration is correlated with sphingolipid concentrations in rat brainJ Nutr. (2004)
  196. a b c d e f Carrié I, et al. Lifelong low-phylloquinone intake is associated with cognitive impairments in old ratsJ Nutr. (2011)
  197. a b c Novel growth factor Gas6, phosphatidylserine and their age-related changes in the rat brain.
  198. ^ Romero EE, et al. Cloning of rat vitamin K-dependent gamma-glutamyl carboxylase and developmentally regulated gene expression in postimplantation embryosExp Cell Res. (1998)
  199. ^ Pauli RM. Mechanism of bone and cartilage maldevelopment in the warfarin embryopathyPathol Immunopathol Res. (1988)
  200. ^ Hall JG, Pauli RM, Wilson KM. Maternal and fetal sequelae of anticoagulation during pregnancyAm J Med. (1980)
  201. a b c d e f Ferland G. Vitamin K and the nervous system: an overview of its actionsAdv Nutr. (2012)
  202. ^ Bartke N, Hannun YA. Bioactive sphingolipids: metabolism and functionJ Lipid Res. (2009)
  203. ^ Norton WT, Poduslo SE. Myelination in rat brain: changes in myelin composition during brain maturationJ Neurochem. (1973)
  204. ^ The Lipid Sulfatide Is a Novel Myelin-Associated Inhibitor of CNS Axon Outgrowth.
  205. a b Sundaram KS, et al. Vitamin K status influences brain sulfatide metabolism in young mice and ratsJ Nutr. (1996)
  206. a b c Sundaram KS, Lev M. Warfarin administration reduces synthesis of sulfatides and other sphingolipids in mouse brainJ Lipid Res. (1988)
  207. a b Crivello NA, et al. Age- and brain region-specific effects of dietary vitamin K on myelin sulfatidesJ Nutr Biochem. (2010)
  208. ^ Lev M. Vitamin K deficiency in Fusiformis nigrescens. I. Influence on whole cells and cell envelope characteristicsJ Bacteriol. (1968)
  209. ^ Lev M, Milford AF. Vitamin K stimulation of sphingolipid synthesisBiochem Biophys Res Commun. (1971)
  210. ^ Lev M, Milford AF. Effect of vitamin K depletion and restoration on sphingolipid metabolism in Bacteroides melaninogenicusJ Lipid Res. (1972)
  211. ^ Lev M, Milford AF. The 3-ketodihydrosphingosine synthetase of Bacteroides melaninogenicus: induction by vitamin KArch Biochem Biophys. (1973)
  212. ^ Lev M. Sphingolipid biosynthesis and vitamin K metabolism in Bacteroides melaninogenicusAm J Clin Nutr. (1979)
  213. ^ Sundaram KS, Lev M. Vitamin K and phosphate mediated enhancement of brain sulfotransferase activityBiochem Biophys Res Commun. (1990)
  214. ^ Sundaram KS, Lev M. Purification and activation of brain sulfotransferaseJ Biol Chem. (1992)
  215. ^ Sundaram KS, Lev M. Regulation of sulfotransferase activity by vitamin K in mouse brainArch Biochem Biophys. (1990)
  216. ^ Sakaue M, et al. Vitamin K has the potential to protect neurons from methylmercury-induced cell death in vitroJ Neurosci Res. (2011)
  217. a b Li J, Wang H, Rosenberg PA. Vitamin K prevents oxidative cell death by inhibiting activation of 12-lipoxygenase in developing oligodendrocytesJ Neurosci Res. (2009)
  218. ^ Westhofen P, et al. Human vitamin K 2,3-epoxide reductase complex subunit 1-like 1 (VKORC1L1) mediates vitamin K-dependent intracellular antioxidant functionJ Biol Chem. (2011)
  219. a b c Allen MP, et al. Growth arrest-specific gene 6 (Gas6)/adhesion related kinase (Ark) signaling promotes gonadotropin-releasing hormone neuronal survival via extracellular signal-regulated kinase (ERK) and AktMol Endocrinol. (1999)
  220. a b Funakoshi H, et al. Identification of Gas6, a putative ligand for Sky and Axl receptor tyrosine kinases, as a novel neurotrophic factor for hippocampal neuronsJ Neurosci Res. (2002)
  221. a b Shankar SL, et al. The growth arrest-specific gene product Gas6 promotes the survival of human oligodendrocytes via a phosphatidylinositol 3-kinase-dependent pathwayJ Neurosci. (2003)
  222. ^ Yagami T, et al. Effect of Gas6 on secretory phospholipase A(2)-IIA-induced apoptosis in cortical neuronsBrain Res. (2003)
  223. ^ Yagami T, et al. Gas6 rescues cortical neurons from amyloid beta protein-induced apoptosisNeuropharmacology. (2002)
  224. ^ Prieto AL, et al. Localization and signaling of the receptor protein tyrosine kinase Tyro3 in cortical and hippocampal neuronsNeuroscience. (2007)
  225. ^ He X, et al. The gene encoding vitamin K-dependent anticoagulant protein S is expressed in multiple rabbit organs as demonstrated by northern blotting, in situ hybridization, and immunohistochemistryJ Histochem Cytochem. (1995)
  226. a b c d Stitt TN, et al. The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinasesCell. (1995)
  227. ^ Phillips DJ, et al. Protein S, an antithrombotic factor, is synthesized and released by neural tumor cellsJ Neurochem. (1993)
  228. ^ Liu D, et al. Protein S confers neuronal protection during ischemic/hypoxic injury in miceCirculation. (2003)
  229. ^ Zhong Z, et al. Protein S protects neurons from excitotoxic injury by activating the TAM receptor Tyro3-phosphatidylinositol 3-kinase-Akt pathway through its sex hormone-binding globulin-like regionJ Neurosci. (2010)
  230. ^ Nakajima M, et al. Age-dependent survival-promoting activity of vitamin K on cultured CNS neuronsBrain Res Dev Brain Res. (1993)
  231. ^ Li R, et al. Identification of Gas6 as a growth factor for human Schwann cellsJ Neurosci. (1996)
  232. ^ Tsang CK, Kamei Y. Novel effect of vitamin K(1) (phylloquinone) and vitamin K(2) (menaquinone) on promoting nerve growth factor-mediated neurite outgrowth from PC12D cellsNeurosci Lett. (2002)
  233. a b Reddi K, et al. Interleukin 6 production by lipopolysaccharide-stimulated human fibroblasts is potently inhibited by naphthoquinone (vitamin K) compoundsCytokine. (1995)
  234. ^ Moriya M, et al. Vitamin K2 ameliorates experimental autoimmune encephalomyelitis in Lewis ratsJ Neuroimmunol. (2005)
  235. a b Ohsaki Y, et al. Vitamin K suppresses lipopolysaccharide-induced inflammation in the ratBiosci Biotechnol Biochem. (2006)
  236. ^ Sato Y, et al. Thyroid hormone targets matrix Gla protein gene associated with vascular smooth muscle calcificationCirc Res. (2005)
  237. ^ Binder MD, et al. Gas6 deficiency increases oligodendrocyte loss and microglial activation in response to cuprizone-induced demyelinationJ Neurosci. (2008)
  238. ^ Tsiperson V, et al. GAS6 enhances repair following cuprizone-induced demyelinationPLoS One. (2010)
  239. a b Presse N1, et al. Vitamin K status and cognitive function in healthy older adultsNeurobiol Aging. (2013)
  240. ^ Stenhoff J, Dahlbäck B, Hafizi S. Vitamin K-dependent Gas6 activates ERK kinase and stimulates growth of cardiac fibroblastsBiochem Biophys Res Commun. (2004)
  241. a b c d Drolet B, et al. Vitamin K modulates cardiac action potential by blocking sodium and potassium ion channelsJ Cardiovasc Pharmacol Ther. (2000)
  242. ^ Soedirman JR, et al. Pharmacokinetics and tolerance of intravenous and intramuscular phylloquinone (vitamin K1) mixed micelles formulationBr J Clin Pharmacol. (1996)
  243. ^ Stafford DW. The vitamin K cycleJ Thromb Haemost. (2005)
  244. ^ Nelsestuen GL, Zytkovicz TH, Howard JB. The mode of action of vitamin K. Identification of gamma-carboxyglutamic acid as a component of prothrombinJ Biol Chem. (1974)
  245. ^ Stenflo J, et al. Vitamin K dependent modifications of glutamic acid residues in prothrombinProc Natl Acad Sci U S A. (1974)
  246. a b Cranenburg EC, Schurgers LJ, Vermeer C. Vitamin K: the coagulation vitamin that became omnipotentThromb Haemost. (2007)
  247. ^ Krueger T, et al. Coagulation meets calcification: the vitamin K systemInt J Artif Organs. (2009)
  248. ^ Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffnessArterioscler Thromb Vasc Biol. (2005)
  249. ^ Calcification in atherosclerosis: Bone biology and chronic inflammation at the arterial crossroads.
  250. ^ Detrano RC, et al. Predicting coronary events with coronary calcium: pathophysiologic and clinical problemsCurr Probl Cardiol. (2000)
  251. ^ Jeziorska M, McCollum C, Wooley DE. Observations on bone formation and remodelling in advanced atherosclerotic lesions of human carotid arteriesVirchows Arch. (1998)
  252. a b Tota-Maharaj R, et al. Coronary artery calcium for the prediction of mortality in young adults <45 years old and elderly adults >75 years oldEur Heart J. (2012)
  253. a b Kramer CK, et al. Coronary artery calcium score prediction of all cause mortality and cardiovascular events in people with type 2 diabetes: systematic review and meta-analysisBMJ. (2013)
  254. ^ Detrano R, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groupsN Engl J Med. (2008)
  255. ^ Thompson GR, Partridge J. Coronary calcification score: the coronary-risk impact factorLancet. (2004)
  256. ^ Shea MK, et al. Association between circulating vitamin K1 and coronary calcium progression in community-dwelling adults: the Multi-Ethnic Study of AtherosclerosisAm J Clin Nutr. (2013)
  257. a b c d e Shea MK, et al. Vitamin K supplementation and progression of coronary artery calcium in older men and womenAm J Clin Nutr. (2009)
  258. ^ Kuller LH, et al. Incident coronary artery calcium among postmenopausal womenAtherosclerosis. (2008)
  259. a b Kronmal RA, et al. Risk factors for the progression of coronary artery calcification in asymptomatic subjects: results from the Multi-Ethnic Study of Atherosclerosis (MESA)Circulation. (2007)
  260. ^ Murshed M, et al. Extracellular matrix mineralization is regulated locally; different roles of two gla-containing proteinsJ Cell Biol. (2004)
  261. a b c Schurgers LJ, Cranenburg EC, Vermeer C. Matrix Gla-protein: the calcification inhibitor in need of vitamin KThromb Haemost. (2008)
  262. a b Luo G, et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA proteinNature. (1997)
  263. ^ Schurgers LJ, et al. Novel conformation-specific antibodies against matrix gamma-carboxyglutamic acid (Gla) protein: undercarboxylated matrix Gla protein as marker for vascular calcificationArterioscler Thromb Vasc Biol. (2005)
  264. a b Dhore CR, et al. Differential expression of bone matrix regulatory proteins in human atherosclerotic plaquesArterioscler Thromb Vasc Biol. (2001)
  265. a b Schurgers LJ, et al. The circulating inactive form of matrix gla protein is a surrogate marker for vascular calcification in chronic kidney disease: a preliminary reportClin J Am Soc Nephrol. (2010)
  266. ^ Cranenburg EC, et al. The circulating inactive form of matrix Gla Protein (ucMGP) as a biomarker for cardiovascular calcificationJ Vasc Res. (2008)
  267. a b c Schurgers LJ, et al. Regression of warfarin-induced medial elastocalcinosis by high intake of vitamin K in ratsBlood. (2007)
  268. ^ High expression of genes for calcification-regulating proteins in human atherosclerotic plaques.
  269. ^ Schurgers LJ, et al. Novel effects of diets enriched with corn oil or with an olive oil/sunflower oil mixture on vitamin K metabolism and vitamin K-dependent proteins in young menJ Lipid Res. (2002)
  270. ^ Shea MK, et al. Circulating uncarboxylated matrix gla protein is associated with vitamin K nutritional status, but not coronary artery calcium, in older adultsJ Nutr. (2011)
  271. ^ Villines TC, et al. Vitamin K1 intake and coronary calcificationCoron Artery Dis. (2005)
  272. ^ Braam LA, et al. Beneficial effects of vitamins D and K on the elastic properties of the vessel wall in postmenopausal women: a follow-up studyThromb Haemost. (2004)
  273. a b Sakamoto N, et al. Possible effects of one week vitamin K (menaquinone-4) tablets intake on glucose tolerance in healthy young male volunteers with different descarboxy prothrombin levelsClin Nutr. (2000)
  274. a b c Gower BA, et al. Associations of total and undercarboxylated osteocalcin with peripheral and hepatic insulin sensitivity and β-cell function in overweight adultsJ Clin Endocrinol Metab. (2013)
  275. ^ Shea MK, et al. Gamma-carboxylation of osteocalcin and insulin resistance in older men and womenAm J Clin Nutr. (2009)
  276. a b Pittas AG, et al. Association between serum osteocalcin and markers of metabolic phenotypeJ Clin Endocrinol Metab. (2009)
  277. a b Kindblom JM, et al. Plasma osteocalcin is inversely related to fat mass and plasma glucose in elderly Swedish menJ Bone Miner Res. (2009)
  278. a b Im JA, et al. Relationship between osteocalcin and glucose metabolism in postmenopausal womenClin Chim Acta. (2008)
  279. a b Fernández-Real JM, et al. The relationship of serum osteocalcin concentration to insulin secretion, sensitivity, and disposal with hypocaloric diet and resistance trainingJ Clin Endocrinol Metab. (2009)
  280. ^ Yoshida M, et al. Phylloquinone intake, insulin sensitivity, and glycemic status in men and womenAm J Clin Nutr. (2008)
  281. a b Juanola-Falgarona M, et al. Association between dietary phylloquinone intake and peripheral metabolic risk markers related to insulin resistance and diabetes in elderly subjects at high cardiovascular riskCardiovasc Diabetol. (2013)
  282. ^ Ibarrola-Jurado N, et al. Dietary phylloquinone intake and risk of type 2 diabetes in elderly subjects at high risk of cardiovascular diseaseAm J Clin Nutr. (2012)
  283. ^ Pan Y, Jackson RT. Dietary phylloquinone intakes and metabolic syndrome in US young adultsJ Am Coll Nutr. (2009)
  284. ^ Vitamin K2 Supplementation Improves Insulin Sensitivity via Osteocalcin Metabolism: A Placebo-Controlled Trial.
  285. ^ Yamauchi T, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesityNat Med. (2001)
  286. ^ Kubota N, et al. Disruption of adiponectin causes insulin resistance and neointimal formationJ Biol Chem. (2002)
  287. ^ Kadowaki T, et al. Adiponectin, adiponectin receptors, and epigenetic regulation of adipogenesisCold Spring Harb Symp Quant Biol. (2011)
  288. ^ Knapen MH, et al. Association of vitamin K status with adiponectin and body composition in healthy subjects: uncarboxylated osteocalcin is not associated with fat mass and body weightBr J Nutr. (2012)
  289. a b Koshihara Y, et al. Vitamin K stimulates osteoblastogenesis and inhibits osteoclastogenesis in human bone marrow cell cultureJ Endocrinol. (2003)
  290. ^ Mani S, et al. Activation of the steroid and xenobiotic receptor (human pregnane X receptor) by nontaxane microtubule-stabilizing agentsClin Cancer Res. (2005)
  291. ^ Kliewer SA, et al. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathwayCell. (1998)
  292. a b Koshihara Y, et al. Vitamin K2 promotes 1alpha,25(OH)2 vitamin D3-induced mineralization in human periosteal osteoblastsCalcif Tissue Int. (1996)
  293. ^ Akedo Y, et al. Vitamin K2 modulates proliferation and function of osteoblastic cells in vitroBiochem Biophys Res Commun. (1992)
  294. a b Akiyama Y, et al. Effect of vitamin K2 (menatetrenone) on osteoclast-like cell formation in mouse bone marrow culturesEur J Pharmacol. (1994)
  295. a b Price PA, et al. Characterization of a gamma-carboxyglutamic acid-containing protein from boneProc Natl Acad Sci U S A. (1976)
  296. ^ Hauschka PV, Lian JB, Gallop PM. Direct identification of the calcium-binding amino acid, gamma-carboxyglutamate, in mineralized tissueProc Natl Acad Sci U S A. (1975)
  297. ^ Fusaro M, et al. Vitamin K, bone fractures, and vascular calcifications in chronic kidney disease: an important but poorly studied relationshipJ Endocrinol Invest. (2011)
  298. ^ Dowd TL, et al. The three-dimensional structure of bovine calcium ion-bound osteocalcin using 1H NMR spectroscopyBiochemistry. (2003)
  299. ^ Hoang QQ, et al. Bone recognition mechanism of porcine osteocalcin from crystal structureNature. (2003)
  300. ^ Mizuguchi M, et al. Fourier-transform infrared spectroscopic study of Ca2+-binding to osteocalcinCalcif Tissue Int. (2001)
  301. ^ Ducy P, et al. Increased bone formation in osteocalcin-deficient miceNature. (1996)
  302. ^ Hauschka PV, Reid ML. Timed appearance of a calcium-binding protein containing gamma-carboxyglutamic acid in developing chick boneDev Biol. (1978)
  303. ^ Lian JB, et al. Concentrations of osteocalcin and phosphoprotein as a function of mineral content and age in cortical boneCalcif Tissue Int. (1982)
  304. ^ Ingram RT, et al. Age- and gender-related changes in the distribution of osteocalcin in the extracellular matrix of normal male and female bone. Possible involvement of osteocalcin in bone remodelingJ Clin Invest. (1994)
  305. ^ Boskey AL, et al. Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcinBone. (1998)
  306. ^ Akiyama Y, et al. Inhibitory effect of vitamin K2 (menatetrenone) on bone resorption in ovariectomized rats: a histomorphometric and dual energy X-ray absorptiometric studyJpn J Pharmacol. (1999)
  307. ^ Mawatari T, et al. Effect of vitamin K2 on three-dimensional trabecular microarchitecture in ovariectomized ratsJ Bone Miner Res. (2000)
  308. ^ Fang Y, et al. Effect of vitamin K on bone mineral density: a meta-analysis of randomized controlled trialsJ Bone Miner Metab. (2012)
  309. a b c Braam LA, et al. Vitamin K1 supplementation retards bone loss in postmenopausal women between 50 and 60 years of ageCalcif Tissue Int. (2003)
  310. ^ Purwosunu Y, et al. Vitamin K2 treatment for postmenopausal osteoporosis in IndonesiaJ Obstet Gynaecol Res. (2006)
  311. a b c Ushiroyama T, Ikeda A, Ueki M. Effect of continuous combined therapy with vitamin K(2) and vitamin D(3) on bone mineral density and coagulofibrinolysis function in postmenopausal womenMaturitas. (2002)
  312. ^ Nishiguchi S, et al. Randomized pilot trial of vitamin K2 for bone loss in patients with primary biliary cirrhosisJ Hepatol. (2001)
  313. a b c d Somekawa Y, et al. Use of vitamin K2 (menatetrenone) and 1,25-dihydroxyvitamin D3 in the prevention of bone loss induced by leuprolideJ Clin Endocrinol Metab. (1999)
  314. a b c d Sasaki N, et al. Vitamin K2 inhibits glucocorticoid-induced bone loss partly by preventing the reduction of osteoprotegerin (OPG)J Bone Miner Metab. (2005)
  315. ^ Knapen MH, et al. Three-year low-dose menaquinone-7 supplementation helps decrease bone loss in healthy postmenopausal womenOsteoporos Int. (2013)
  316. ^ Braam LA, et al. Factors affecting bone loss in female endurance athletes: a two-year follow-up studyAm J Sports Med. (2003)
  317. a b Volpe SL, Leung MM, Giordano H. Vitamin K supplementation does not significantly impact bone mineral density and biochemical markers of bone in pre- and perimenopausal womenNutr Res. (2008)
  318. ^ Booth SL, et al. Effect of vitamin K supplementation on bone loss in elderly men and womenJ Clin Endocrinol Metab. (2008)
  319. a b c d e Shea MK, et al. Vitamin K, circulating cytokines, and bone mineral density in older men and womenAm J Clin Nutr. (2008)
  320. ^ Binkley N, et al. Vitamin K treatment reduces undercarboxylated osteocalcin but does not alter bone turnover, density, or geometry in healthy postmenopausal North American womenJ Bone Miner Res. (2009)
  321. a b c Forli L, et al. Dietary vitamin K2 supplement improves bone status after lung and heart transplantationTransplantation. (2010)
  322. ^ Emaus N, et al. Vitamin K2 supplementation does not influence bone loss in early menopausal women: a randomised double-blind placebo-controlled trialOsteoporos Int. (2010)
  323. ^ Hart JP, et al. Circulating vitamin K1 levels in fractured neck of femurLancet. (1984)
  324. ^ Luukinen H, et al. Strong prediction of fractures among older adults by the ratio of carboxylated to total serum osteocalcinJ Bone Miner Res. (2000)
  325. ^ Vermeer C. Vitamin K: the effect on health beyond coagulation – an overviewFood Nutr Res. (2012)
  326. ^ Penington NJ, Kelly JS, Fox AP. A study of the mechanism of Ca2+ current inhibition produced by serotonin in rat dorsal raphe neuronsJ Neurosci. (1991)
  327. ^ Falcone TD, Kim SS, Cortazzo MH. Vitamin K: fracture prevention and beyondPM R. (2011)
  328. ^ Knapen MH, Schurgers LJ, Vermeer C. Vitamin K2 supplementation improves hip bone geometry and bone strength indices in postmenopausal womenOsteoporos Int. (2007)
  329. ^ Vitamin K Supplementation in Postmenopausal Women with Osteopenia (ECKO Trial): A Randomized Controlled Trial.
  330. ^ Inoue T, et al. Randomized controlled study on the prevention of osteoporotic fractures (OF study): a phase IV clinical study of 15-mg menatetrenone capsulesJ Bone Miner Metab. (2009)
  331. ^ Neogi T, et al. Low vitamin K status is associated with osteoarthritis in the hand and kneeArthritis Rheum. (2006)
  332. ^ Oka H, et al. Association of low dietary vitamin K intake with radiographic knee osteoarthritis in the Japanese elderly population: dietary survey in a population-based cohort of the ROAD studyJ Orthop Sci. (2009)
  333. ^ Wallin R, Schurgers LJ, Loeser RF. Biosynthesis of the vitamin K-dependent matrix Gla protein (MGP) in chondrocytes: a fetuin-MGP protein complex is assembled in vesicles shed from normal but not from osteoarthritic chondrocytesOsteoarthritis Cartilage. (2010)
  334. a b Newman B, et al. Coordinated expression of matrix Gla protein is required during endochondral ossification for chondrocyte survivalJ Cell Biol. (2001)
  335. ^ Luo G, et al. The matrix Gla protein gene is a marker of the chondrogenesis cell lineage during mouse developmentJ Bone Miner Res. (1995)
  336. ^ Yagami K, et al. Matrix GLA protein is a developmental regulator of chondrocyte mineralization and, when constitutively expressed, blocks endochondral and intramembranous ossification in the limbJ Cell Biol. (1999)
  337. ^ Hale JE, Fraser JD, Price PA. The identification of matrix Gla protein in cartilageJ Biol Chem. (1988)
  338. ^ Munroe PB, et al. Mutations in the gene encoding the human matrix Gla protein cause Keutel syndromeNat Genet. (1999)
  339. ^ Misra D, et al. Matrix Gla protein polymorphism, but not concentrations, is associated with radiographic hand osteoarthritisJ Rheumatol. (2011)
  340. ^ Shea MK, et al. Vitamin K and vitamin D status: associations with inflammatory markers in the Framingham Offspring StudyAm J Epidemiol. (2008)
  341. ^ Kopp E, Medzhitov R. Recognition of microbial infection by Toll-like receptorsCurr Opin Immunol. (2003)
  342. ^ Tanaka S, et al. Vitamin K3 attenuates lipopolysaccharide-induced acute lung injury through inhibition of nuclear factor-kappaB activationClin Exp Immunol. (2010)
  343. a b Sasaki T, et al. Crystal structure of a C-terminal fragment of growth arrest-specific protein Gas6. Receptor tyrosine kinase activation by laminin G-like domainsJ Biol Chem. (2002)
  344. ^ Requirement of gamma-carboxyglutamic acid residues for the biological activity of Gas6: contribution of endogenous Gas6 to the proliferation of vascular smooth muscle cells.
  345. ^ Roles of γ-carboxylation and a sex hormone-binding globulin-like domain in receptor-binding and in biological activities of Gas6.
  346. ^ Grishkovskaya I, et al. Crystal structure of human sex hormone-binding globulin: steroid transport by a laminin G-like domainEMBO J. (2000)
  347. ^ Steroidogenic Enzymes in Leydig Cells.
  348. ^ Son BK, et al. Androgen receptor-dependent transactivation of growth arrest-specific gene 6 mediates inhibitory effects of testosterone on vascular calcificationJ Biol Chem. (2010)
  349. ^ Lukert BP, Raisz LG. Glucocorticoid-induced osteoporosis: pathogenesis and managementAnn Intern Med. (1990)
  350. ^ Reid IR. Glucocorticoid osteoporosis–mechanisms and managementEur J Endocrinol. (1997)
  351. ^ Isolation of a Novel Cytokine from Human Fibroblasts That Specifically Inhibits Osteoclastogenesis.
  352. ^ Simonet WS, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone densityCell. (1997)
  353. ^ Lacey DL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activationCell. (1998)
  354. ^ Sasaki N, et al. Glucocorticoid decreases circulating osteoprotegerin (OPG): possible mechanism for glucocorticoid induced osteoporosisNephrol Dial Transplant. (2001)
  355. ^ Thomas DD, et al. Exocrine pancreatic secretion of phospholipid, menaquinone-4, and caveolin-1 in vivoBiochem Biophys Res Commun. (2004)
  356. ^ Stenberg LM, et al. Synthesis of gamma-carboxylated polypeptides by alpha-cells of the pancreatic isletsBiochem Biophys Res Commun. (2001)
  357. ^ Prasad KN, Edwards-Prasad J, Sakamoto A. Vitamin K3 (menadione) inhibits the growth of mammalian tumor cells in cultureLife Sci. (1981)
  358. ^ Wu FY, et al. Vitamin K3-induced cell cycle arrest and apoptotic cell death are accompanied by altered expression of c-fos and c-myc in nasopharyngeal carcinoma cellsOncogene. (1993)
  359. ^ Ngo EO, et al. Menadione-induced DNA damage in a human tumor cell lineBiochem Pharmacol. (1991)
  360. a b Su WC, Sun TP, Wu FY. The in vitro and in vivo cytotoxicity of menadione (vitamin K3) against rat transplantable hepatoma induced by 3′-methyl-4-dimethyl-aminoazobenzeneGaoxiong Yi Xue Ke Xue Za Zhi. (1991)
  361. a b Lamson DW, Plaza SM. The anticancer effects of vitamin KAltern Med Rev. (2003)
  362. ^ Saxena SP, Israels ED, Israels LG. Novel vitamin K-dependent pathways regulating cell survivalApoptosis. (2001)
  363. ^ Bellosta P, et al. Signaling through the ARK tyrosine kinase receptor protects from apoptosis in the absence of growth stimulationOncogene. (1997)
  364. ^ Avanzi GC, et al. GAS6 inhibits granulocyte adhesion to endothelial cellsBlood. (1998)
  365. ^ Ishimoto Y, et al. Promotion of the uptake of PS liposomes and apoptotic cells by a product of growth arrest-specific gene, gas6J Biochem. (2000)
  366. ^ [No authors listed. Predictive factors for long term prognosis after partial hepatectomy for patients with hepatocellular carcinoma in Japan. The Liver Cancer Study Group of JapanCancer. (1994)
  367. ^ Nishikawa Y, et al. Growth inhibition of hepatoma cells induced by vitamin K and its analogsJ Biol Chem. (1995)
  368. ^ Chlebowski RT, et al. Vitamin K3 inhibition of malignant murine cell growth and human tumor colony formationCancer Treat Rep. (1985)
  369. ^ Wang Z, et al. The growth inhibitory effects of vitamins K and their actions on gene expressionHepatology. (1995)
  370. a b Wu FY, Liao WC, Chang HM. Comparison of antitumor activity of vitamins K1, K2 and K3 on human tumor cells by two (MTT and SRB) cell viability assaysLife Sci. (1993)
  371. ^ Hassan GS. MenadioneProfiles Drug Subst Excip Relat Methodol. (2013)
  372. a b Ishizuka M, et al. Effect of menatetrenone, a vitamin k2 analog, on recurrence of hepatocellular carcinoma after surgical resection: a prospective randomized controlled trialAnticancer Res. (2012)
  373. a b Mizuta T, et al. The effect of menatetrenone, a vitamin K2 analog, on disease recurrence and survival in patients with hepatocellular carcinoma after curative treatment: a pilot studyCancer. (2006)
  374. ^ Hepatocellular Carcinoma: Current Management and Future Trends.
  375. a b Lou WW, et al. Effects of topical vitamin K and retinol on laser-induced purpura on nonlesional skinDermatol Surg. (1999)
  376. ^ Kovács RK, et al. Lack of the effect of topical vitamin K on bruising after mechanical injuryJ Am Acad Dermatol. (2004)
  377. ^ Howe AM, et al. Binder’s syndrome due to prenatal vitamin K deficiency: a theory of pathogenesisAust Dent J. (1992)
  378. ^ Irving MD, et al. Chondrodysplasia punctata: a clinical diagnostic and radiological reviewClin Dysmorphol. (2008)
  379. ^ Shearer MJ. Vitamin K metabolism and nutritureBlood Rev. (1992)
  380. a b c d Greer FR, et al. Vitamin K status of lactating mothers, human milk, and breast-feeding infantsPediatrics. (1991)
  381. ^ Canfield LM, et al. Quantitation of vitamin K in human milkLipids. (1990)
  382. ^ Canfield LM, et al. Vitamin K in colostrum and mature human milk over the lactation period–a cross-sectional studyAm J Clin Nutr. (1991)
  383. ^ Kojima T, et al. Vitamin K concentrations in the maternal milk of Japanese womenActa Paediatr. (2004)
  384. ^ Greer FR. Are breast-fed infants vitamin K deficientAdv Exp Med Biol. (2001)
  385. ^ Conway SP, et al. Vitamin K status among children with cystic fibrosis and its relationship to bone mineral density and bone turnoverPediatrics. (2005)
  386. ^ Sokol RJ, et al. Fat-soluble vitamins in infants identified by cystic fibrosis newborn screeningPediatr Pulmonol Suppl. (1991)
  387. ^ Jagannath VA, et al. Vitamin K supplementation for cystic fibrosisCochrane Database Syst Rev. (2013)
  388. ^ Bergen AA, et al. Mutations in ABCC6 cause pseudoxanthoma elasticumNat Genet. (2000)
  389. ^ Ringpfeil F, et al. Pseudoxanthoma elasticum: mutations in the MRP6 gene encoding a transmembrane ATP-binding cassette (ABC) transporterProc Natl Acad Sci U S A. (2000)
  390. ^ Borst P, van de Wetering K, Schlingemann R. Does the absence of ABCC6 (multidrug resistance protein 6) in patients with Pseudoxanthoma elasticum prevent the liver from providing sufficient vitamin K to the peripheryCell Cycle. (2008)
  391. ^ Li Q, et al. Pseudoxanthoma elasticum: reduced gamma-glutamyl carboxylation of matrix gla protein in a mouse model (Abcc6-/-)Biochem Biophys Res Commun. (2007)
  392. a b Brampton C, et al. Vitamin K does not prevent soft tissue mineralization in a mouse model of pseudoxanthoma elasticumCell Cycle. (2011)
  393. ^ Noto V, et al. Effects of sodium ascorbate (vitamin C) and 2-methyl-1,4-naphthoquinone (vitamin K3) treatment on human tumor cell growth in vitro. I. Synergism of combined vitamin C and K3 actionCancer. (1989)
  394. ^ De Loecker W, et al. Effects of sodium ascorbate (vitamin C) and 2-methyl-1,4-naphthoquinone (vitamin K3) treatment on human tumor cell growth in vitro. II. Synergism with combined chemotherapy actionAnticancer Res. (1993)
  395. ^ Zhang W, et al. Synergistic cytotoxic action of vitamin C and vitamin K3Anticancer Res. (2001)
  396. ^ von Gruenigen VE, et al. The in vitro antitumor activity of vitamins C and K3 against ovarian carcinomaAnticancer Res. (2003)
  397. ^ Waxman S, Bruckner H. The enhancement of 5-fluorouracil anti-metabolic activity by leucovorin, menadione and alpha-tocopherolEur J Cancer Clin Oncol. (1982)
  398. ^ Liao WC, Wu FY, Wu CW. Binary/ternary combined effects of vitamin K3 with other antitumor agents in nasopharyngeal carcinoma CG1 cellsInt J Oncol. (2000)
  399. ^ Nutter LM, et al. Menadione: spectrum of anticancer activity and effects on nucleotide metabolism in human neoplastic cell linesBiochem Pharmacol. (1991)
  400. a b Masterjohn C. Vitamin D toxicity redefined: vitamin K and the molecular mechanismMed Hypotheses. (2007)
  401. ^ Steingrimsdottir L, et al. Relationship between serum parathyroid hormone levels, vitamin D sufficiency, and calcium intakeJAMA. (2005)
  402. ^ Miyake N, et al. 1,25-Dihydroxyvitamin D3 promotes vitamin K2 metabolism in human osteoblastsOsteoporos Int. (2001)
  403. a b Price PA, Faus SA, Williamson MK. Warfarin-induced artery calcification is accelerated by growth and vitamin DArterioscler Thromb Vasc Biol. (2000)
  404. ^ Price PA, Buckley JR, Williamson MK. The amino bisphosphonate ibandronate prevents vitamin D toxicity and inhibits vitamin D-induced calcification of arteries, cartilage, lungs and kidneys in ratsJ Nutr. (2001)
  405. ^ Price PA, Faus SA, Williamson MK. Bisphosphonates alendronate and ibandronate inhibit artery calcification at doses comparable to those that inhibit bone resorptionArterioscler Thromb Vasc Biol. (2001)
  406. ^ Booth SL, et al. Effect of vitamin E supplementation on vitamin K status in adults with normal coagulation statusAm J Clin Nutr. (2004)
  407. a b Hanzawa F, et al. Dietary Sesame Seed and Its Lignan, Sesamin, Increase Tocopherol and Phylloquinone Concentrations in Male RatsJ Nutr. (2013)
  408. a b Schurgers LJ, et al. Effect of vitamin K intake on the stability of oral anticoagulant treatment: dose-response relationships in healthy subjectsBlood. (2004)
  409. ^ Crowther MA, et al. Low-dose oral vitamin K reliably reverses over-anticoagulation due to warfarinThromb Haemost. (1998)
  410. ^ Denas G, et al. Effectiveness and safety of a management protocol to correct over-anticoagulation with oral vitamin K: a retrospective study of 1,043 casesJ Thromb Thrombolysis. (2009)
  411. ^ Rombouts EK, Rosendaal FR, Van Der Meer FJ. Daily vitamin K supplementation improves anticoagulant stabilityJ Thromb Haemost. (2007)
  412. ^ Vitamin K1 supplementation to improve the stability of anticoagulation therapy with vitamin K antagonists: a dose-finding study.
  413. ^ Sconce E, et al. Vitamin K supplementation can improve stability of anticoagulation for patients with unexplained variability in response to warfarinBlood. (2007)
  414. ^ Reese AM, et al. Low-dose vitamin K to augment anticoagulation controlPharmacotherapy. (2005)
  415. a b Chiou TJ, et al. Cardiac and renal toxicity of menadione in ratToxicology. (1997)
  416. ^ Songy KA Jr, Layon AJ. Vitamin K-induced cardiovascular collapseJ Clin Anesth. (1997)
  417. ^ Barash P, Kitahata LM, Mandel S. Acute cardiovascular collapse after intravenous phytonadioneAnesth Analg. (1976)
  418. ^ Lefrère JJ, Girot R. Acute cardiovascular collapse during intravenous vitamin K1 injectionThromb Haemost. (1987)
  419. a b Rich EC, Drage CW. Severe complications of intravenous phytonadione therapy. Two cases, with one fatalityPostgrad Med. (1982)
  420. ^ Havel M, et al. Tolerability of a new vitamin K1 preparation for parenteral administration to adults: one case of anaphylactoid reactionClin Ther. (1987)
  421. ^ Anaphylactic Shock and Vitamin K1.
  422. a b Disruption of the DT Diaphorase (NQO1) Gene in Mice Leads to Increased Menadione Toxicity.
  423. ^ In Vivo Role of NAD(P)H:Quinone Oxidoreductase 1 (NQO1) in the Regulation of Intracellular Redox State and Accumulation of Abdominal Adipose Tissue.
  424. ^ Radjendirane V, et al. Disruption of the DT diaphorase (NQO1) gene in mice leads to increased menadione toxicityJ Biol Chem. (1998)
  425. ^ The three-dimensional structure of NAD(P)H:quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: mechanism of the two-electron reduction.
  426. a b Tampo Y, Yonaha M. Enzymatic and molecular aspects of the antioxidant effect of menadione in hepatic microsomesArch Biochem Biophys. (1996)
  427. ^ Cadenas E. Antioxidant and prooxidant functions of DT-diaphorase in quinone metabolismBiochem Pharmacol. (1995)
  428. ^ Monks TJ, et al. Quinone chemistry and toxicityToxicol Appl Pharmacol. (1992)
  429. ^ Takahashi N, et al. Formation of glutathione-conjugated semiquinones by the reaction of quinones with glutathione: an ESR studyArch Biochem Biophys. (1987)
  430. ^ Wilson I, et al. Reactivity of thiols towards derivatives of 2- and 6-methyl-1,4-naphthoquinone bioreductive alkylating agentsChem Biol Interact. (1987)
  431. ^ Grant TW, et al. Semiquinone anion radicals formed by the reaction of quinones with glutathione or amino acidsFEBS Lett. (1986)
  432. ^ Gant TW, et al. Redox cycling and sulphydryl arylation; their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytesChem Biol Interact. (1988)
  433. ^ Zadziński R, et al. Menadione toxicity in Saccharomyces cerevisiae cells: activation by conjugation with glutathioneBiochem Mol Biol Int. (1998)
  434. ^ Menadione-(2-methyl-1,4-naphthoquinone) dependent enzymic redox cycling and calcium release by mitochondria.
  435. Dam H. The antihaemorrhagic vitamin of the chickBiochem J. (1935)
  436. Shearer MJ, Newman P. Recent trends in the metabolism and cell biology of vitamin K with special reference to vitamin K cycling and MK-4 biosynthesisJ Lipid Res. (2014)
  437. Ageno W, et al. Oral anticoagulant therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice GuidelinesChest. (2012)
  438. Booth SL. Vitamin K: food composition and dietary intakesFood Nutr Res. (2012)
  439. Kurosu M, Begari E. Vitamin K2 in electron transport system: are enzymes involved in vitamin K2 biosynthesis promising drug targets?Molecules. (2010)
  440. Davidson RT, et al. Conversion of dietary phylloquinone to tissue menaquinone-4 in rats is not dependent on gut bacteriaJ Nutr. (1998)
  441. Beulens JW, et al. The role of menaquinones (vitamin K₂) in human healthBr J Nutr. (2013)
  442. Miggiano GA, Robilotta L. Vitamin K-controlled diet: problems and prospectsClin Ter. (2005)
  443. Holmes MV, Hunt BJ, Shearer MJ. The role of dietary vitamin K in the management of oral vitamin K antagonistsBlood Rev. (2012)
  444. Ikeda Y, et al. Intake of fermented soybeans, natto, is associated with reduced bone loss in postmenopausal women: Japanese Population-Based Osteoporosis (JPOS) StudyJ Nutr. (2006)
  445. Katsuyama H, et al. Usual dietary intake of fermented soybeans (Natto) is associated with bone mineral density in premenopausal womenJ Nutr Sci Vitaminol (Tokyo). (2002)
  446. Shearer MJ. Vitamin KLancet. (1995)
  447. American Academy of Pediatrics Committee on Fetus and Newborn. Controversies concerning vitamin K and the newborn. American Academy of Pediatrics Committee on Fetus and NewbornPediatrics. (2003)
  448. Groenen-van Dooren MM, et al. The relative effects of phylloquinone and menaquinone-4 on the blood coagulation factor synthesis in vitamin K-deficient ratsBiochem Pharmacol. (1993)
  449. Theuwissen E, et al. Effect of low-dose supplements of menaquinone-7 (vitamin K2 ) on the stability of oral anticoagulant treatment: dose-response relationship in healthy volunteersJ Thromb Haemost. (2013)
  450. Asakura H, et al. Vitamin K administration to elderly patients with osteoporosis induces no hemostatic activation, even in those with suspected vitamin K deficiencyOsteoporos Int. (2001)
  451. Mayer O Jr, et al. Desphospho-uncarboxylated matrix Gla-protein is associated with mortality risk in patients with chronic stable vascular diseaseAtherosclerosis. (2014)
  452. Chatrou ML, et al. Vascular calcification: the price to pay for anticoagulation therapy with vitamin K-antagonistsBlood Rev. (2012)
  453. Gast GC, et al. A high menaquinone intake reduces the incidence of coronary heart diseaseNutr Metab Cardiovasc Dis. (2009)
  454. Beulens JW, et al. High dietary menaquinone intake is associated with reduced coronary calcificationAtherosclerosis. (2009)
  455. El Asmar MS, Naoum JJ, Arbid EJ. Vitamin k dependent proteins and the role of vitamin k2 in the modulation of vascular calcification: a reviewOman Med J. (2014)
  456. Kurnatowska I, et al. Effect of vitamin K2 on progression of atherosclerosis and vascular calcification in nondialyzed patients with chronic kidney disease stages 3-5Pol Arch Med Wewn. (2015)
  457. Knapen MH, et al. Menaquinone-7 supplementation improves arterial stiffness in healthy postmenopausal women. A double-blind randomised clinical trialThromb Haemost. (2015)
  458. Fulton RL, et al. Effect of Vitamin K on Vascular Health and Physical Function in Older People with Vascular Disease–A Randomised Controlled TrialJ Nutr Health Aging. (2016)
  459. Gage BF, et al. Risk of osteoporotic fracture in elderly patients taking warfarin: results from the National Registry of Atrial Fibrillation 2Arch Intern Med. (2006)
  460. Hodges SJ, et al. Age-related changes in the circulating levels of congeners of vitamin K2, menaquinone-7 and menaquinone-8Clin Sci (Lond). (1990)
  461. Pisani P, et al. Major osteoporotic fragility fractures: Risk factor updates and societal impactWorld J Orthop. (2016)
  462. Dhanwal DK, et al. Epidemiology of hip fracture: Worldwide geographic variationIndian J Orthop. (2011)
  463. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fracturesOsteoporos Int. (2006)
  464. Cockayne S, et al. Vitamin K and the prevention of fractures: systematic review and meta-analysis of randomized controlled trialsArch Intern Med. (2006)
  465. Cheung AM, et al. Vitamin K supplementation in postmenopausal women with osteopenia (ECKO trial): a randomized controlled trialPLoS Med. (2008)
  466. Nowak JK, et al. Prevalence and correlates of vitamin K deficiency in children with inflammatory bowel diseaseSci Rep. (2014)
  467. Nakajima S, et al. Association of vitamin K deficiency with bone metabolism and clinical disease activity in inflammatory bowel diseaseNutrition. (2011)
  468. Shiratori T, et al. Severe Dextran-Induced Anaphylactic Shock during Induction of Hypertension-Hypervolemia-Hemodilution Therapy following Subarachnoid HemorrhageCase Rep Crit Care. (2015)
  469. Riegert-Johnson DL, Volcheck GW. The incidence of anaphylaxis following intravenous phytonadione (vitamin K1): a 5-year retrospective reviewAnn Allergy Asthma Immunol. (2002)
  470. Bullen AW, et al. Skin reactions caused by vitamin K in patients with liver diseaseBr J Dermatol. (1978)
  471. Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc.
  472. Fu X, et al. Measurement of Multiple Vitamin K Forms in Processed and Fresh-Cut Pork Products in the U.S. Food SupplyJ Agric Food Chem. (2016)
  473. Manoury E, et al. Quantitative measurement of vitamin K2 (menaquinones) in various fermented dairy products using a reliable high-performance liquid chromatography methodJ Dairy Sci. (2013)
  474. Elder SJ, et al. Vitamin k contents of meat, dairy, and fast food in the u.s. DietJ Agric Food Chem. (2006)
  475. Shimogawara K, Muto S. Purification of Chlamydomonas 28-kDa ubiquitinated protein and its identification as ubiquitinated histone H2BArch Biochem Biophys. (1992)
  476. Hirauchi K, et al. Measurement of K vitamins in animal tissues by high-performance liquid chromatography with fluorimetric detectionJ Chromatogr. (1989)
  477. Chen GC, et al. Cheese consumption and risk of cardiovascular disease: a meta-analysis of prospective studiesEur J Nutr. (2017)
  478. Hao G, et al. Vitamin K intake and the risk of fractures: A meta-analysisMedicine (Baltimore). (2017)
  479. Bahadoran Z, et al. The Nitrate-Independent Blood Pressure-Lowering Effect of Beetroot Juice: A Systematic Review and Meta-AnalysisAdv Nutr. (2017)
  480. Lara J, et al. Effects of inorganic nitrate and beetroot supplementation on endothelial function: a systematic review and meta-analysisEur J Nutr. (2016)
  481. Aune D, et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studiesInt J Epidemiol. (2017)
  482. Ried K. Garlic Lowers Blood Pressure in Hypertensive Individuals, Regulates Serum Cholesterol, and Stimulates Immunity: An Updated Meta-analysis and ReviewJ Nutr. (2016)
  483. Ried K, Toben C, Fakler P. Effect of garlic on serum lipids: an updated meta-analysisNutr Rev. (2013)
  484. Kodama S, et al. Fasting and post-challenge glucose as quantitative cardiovascular risk factors: a meta-analysisJ Atheroscler Thromb. (2012)
  485. Mannucci E, et al. Is glucose control important for prevention of cardiovascular disease in diabetes?Diabetes Care. (2013)
  486. Lan J, et al. Meta-analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipemia and hypertensionJ Ethnopharmacol. (2015)
  487. Schaffer SW, et al. Physiological roles of taurine in heart and muscleJ Biomed Sci. (2010)
  488. Ahmadian M, Dabidi Roshan V, Ashourpore E. Taurine Supplementation Improves Functional Capacity, Myocardial Oxygen Consumption, and Electrical Activity in Heart FailureJ Diet Suppl. (2017)
  489. Ahmadian M, et al. Taurine supplementation has anti-atherogenic and anti-inflammatory effects before and after incremental exercise in heart failureTher Adv Cardiovasc Dis. (2017)
  490. Beyranvand MR, et al. Effect of taurine supplementation on exercise capacity of patients with heart failureJ Cardiol. (2011)
  491. Sun Q, et al. Taurine Supplementation Lowers Blood Pressure and Improves Vascular Function in Prehypertension: Randomized, Double-Blind, Placebo-Controlled StudyHypertension. (2016)
  492. Militante JD, Lombardini JB. Treatment of hypertension with oral taurine: experimental and clinical studiesAmino Acids. (2002)