Glutathione, γ-L-Glutamyl-L-cysteinylglycine

Glutathione is a protein composed by three types of amino acids: glutamic acid, L-cysteine ​​and L-glycine. It is naturally produced by the human body, and in its composition there are sulfur chemical groups that fight harmful elements, such as free radicals and toxins (mercury and heavy metals). Glutathione is a powerful antioxidant and detoxifier that protects cells and enhances the immune system.


  • Origin Synthetic, Nonessential
  • Source Milk, Eggs, Meat, Leafy Greens, Walnuts, Brazil Nuts, Nonessential, Synthetic
  • Type Amino Acid, Protein
  • Age Range Teenagers (13-19), Adults (20-59), Seniors (>60)
  • Toxicity May be toxic in high doses
  • Side effects Drowsiness, Nausea, Abdominal Pain, Breathing Difficulties, Skin Rashes
  • Warnings Hepatic Diseases, Renal Diseases

Why be Careful

High doses of glutathione may present undesirable side effects. Glutathione should be cautiously consumed in individuals with hepatic impairment as ammonia resulting from glycine metabolism may accumulate in the blood. Therefore, medical prescription is recommended.


  1. a b Wu G1, et al. Glutathione metabolism and its implications for healthJ Nutr. (2004)
  2. ^ Filomeni G1, Rotilio G, Ciriolo MR. Cell signalling and the glutathione redox systemBiochem Pharmacol. (2002)
  3. ^ Dickinson DA1, Forman HJ. Cellular glutathione and thiols metabolismBiochem Pharmacol. (2002)
  4. a b c Flagg EW1, et al. Dietary glutathione intake in humans and the relationship between intake and plasma total glutathione levelNutr Cancer. (1994)
  5. ^ Griffith OW1, Mulcahy RT. The enzymes of glutathione synthesis: gamma-glutamylcysteine synthetaseAdv Enzymol Relat Areas Mol Biol. (1999)
  6. ^ Reliene R1, Schiestl RH. Glutathione depletion by buthionine sulfoximine induces DNA deletions in miceCarcinogenesis. (2006)
  7. ^ Das GC1, et al. Enhanced gamma-glutamylcysteine synthetase activity decreases drug-induced oxidative stress levels and cytotoxicityMol Carcinog. (2006)
  8. ^ Beutler E, Gelbart T, Pegelow C. Erythrocyte glutathione synthetase deficiency leads not only to glutathione but also to glutathione-S-transferase deficiencyJ Clin Invest. (1986)
  9. ^ Richman PG, Meister A. Regulation of gamma-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathioneJ Biol Chem. (1975)
  10. ^ Huang CS1, Moore WR, Meister A. On the active site thiol of gamma-glutamylcysteine synthetase: relationships to catalysis, inhibition, and regulationProc Natl Acad Sci U S A. (1988)
  11. ^ Gipp JJ1, Chang C, Mulcahy RT. Cloning and nucleotide sequence of a full-length cDNA for human liver gamma-glutamylcysteine synthetaseBiochem Biophys Res Commun. (1992)
  12. a b c Anderson ME. Glutathione: an overview of biosynthesis and modulationChem Biol Interact. (1998)
  13. ^ Mutoh N1, et al. Cloning and sequencing of the gene encoding the large subunit of glutathione synthetase of Schizosaccharomyces pombeBiochem Biophys Res Commun. (1991)
  14. ^ Yamaguchi H1, et al. Three-dimensional structure of the glutathione synthetase from Escherichia coli B at 2.0 A resolutionJ Mol Biol. (1993)
  15. ^ Gali RR1, Board PG. Sequencing and expression of a cDNA for human glutathione synthetaseBiochem J. (1995)
  16. ^ Gali RR1, Board PG. Identification of an essential cysteine residue in human glutathione synthaseBiochem J. (1997)
  17. ^ Griffith OW, Meister A. Differential inhibition of glutamine and gamma-glutamylcysteine synthetases by alpha-alkyl analogs of methionine sulfoximine that induce convulsionsJ Biol Chem. (1978)
  18. a b c d e f g Meister A. Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapyPharmacol Ther. (1991)
  19. a b Owen JB, Butterfield DA. Measurement of oxidized/reduced glutathione ratioMethods Mol Biol. (2010)
  20. ^ Chung PM1, Cappel RE, Gilbert HF. Inhibition of glutathione disulfide reductase by glutathioneArch Biochem Biophys. (1991)
  21. ^ Hayes JD1, Flanagan JU, Jowsey IR. Glutathione transferasesAnnu Rev Pharmacol Toxicol. (2005)
  22. ^ Eichholzer M1, et al. Effects of selenium status, dietary glucosinolate intake and serum glutathione S-transferase α activity on the risk of benign prostatic hyperplasiaBJU Int. (2012)
  23. ^ Huenchuguala S1, et al. Glutathione transferase mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunctionAutophagy. (2014)
  24. ^ Lee WH1, Joshi P, Wen R. Glutathione S-Transferase Pi Isoform (GSTP1) Expression in Murine Retina Increases with Developmental MaturityAdv Exp Med Biol. (2014)
  25. ^ Landi S. Mammalian class theta GST and differential susceptibility to carcinogens: a reviewMutat Res. (2000)
  26. ^ Board PG1, et al. Zeta, a novel class of glutathione transferases in a range of species from plants to humansBiochem J. (1997)
  27. a b c Hayes JD1, Strange RC. Glutathione S-transferase polymorphisms and their biological consequencesPharmacology. (2000)
  28. ^ Pemble SE1, Wardle AF, Taylor JB. Glutathione S-transferase class Kappa: characterization by the cloning of rat mitochondrial GST and identification of a human homologueBiochem J. (1996)
  29. ^ Robinson A1, et al. Modelling and bioinformatics studies of the human Kappa-class glutathione transferase predict a novel third glutathione transferase family with similarity to prokaryotic 2-hydroxychromene-2-carboxylate isomerasesBiochem J. (2004)
  30. ^ Jakobsson PJ1, et al. Common structural features of MAPEG — a widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolismProtein Sci. (1999)
  31. a b Brigelius-Flohé R1, Maiorino M. Glutathione peroxidasesBiochim Biophys Acta. (2013)
  32. ^ Brigelius-Flohé R. Glutathione peroxidases and redox-regulated transcription factorsBiol Chem. (2006)
  33. ^ Klatt P1, Lamas S. Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stressEur J Biochem. (2000)
  34. ^ Hill BG1, Bhatnagar A. Role of glutathiolation in preservation, restoration and regulation of protein functionIUBMB Life. (2007)
  35. ^ Irihimovitch V1, Shapira M. Glutathione redox potential modulated by reactive oxygen species regulates translation of Rubisco large subunit in the chloroplastJ Biol Chem. (2000)
  36. ^ Lockwood TD. Redox control of protein degradationAntioxid Redox Signal. (2000)
  37. ^ Hagen TM1, et al. Fate of dietary glutathione: disposition in the gastrointestinal tractAm J Physiol. (1990)
  38. ^ Garvey TQ 3rd, Hyman PE, Isselbacher KJ. gamma-glutamyl transpeptidase of rat intestine: localization and possible role in amino acid transportGastroenterology. (1976)
  39. a b Fukagawa NK1, Ajami AM, Young VR. Plasma methionine and cysteine kinetics in response to an intravenous glutathione infusion in adult humansAm J Physiol. (1996)
  40. ^ Iantomasi T1, et al. Glutathione transport system in human small intestine epithelial cellsBiochim Biophys Acta. (1997)
  41. ^ Hagen TM1, et al. Bioavailability of dietary glutathione: effect on plasma concentrationAm J Physiol. (1990)
  42. ^ Aw TY1, Wierzbicka G, Jones DP. Oral glutathione increases tissue glutathione in vivoChem Biol Interact. (1991)
  43. ^ Witschi A1, et al. The systemic availability of oral glutathioneEur J Clin Pharmacol. (1992)
  44. a b Aebi S1, Assereto R, Lauterburg BH. High-dose intravenous glutathione in man. Pharmacokinetics and effects on cyst(e)ine in plasma and urineEur J Clin Invest. (1991)
  45. ^ Allen J1, Bradley RD. Effects of oral glutathione supplementation on systemic oxidative stress biomarkers in human volunteersJ Altern Complement Med. (2011)
  46. a b Richie JP Jr1, et al. Randomized controlled trial of oral glutathione supplementation on body stores of glutathioneEur J Nutr. (2014)
  47. ^ Thompson GA, Meister A. Hydrolysis and transfer reactions catalyzed by gamma-glutamyl transpeptidase; evidence for separate substrate sites and for high affinity of L-cystineBiochem Biophys Res Commun. (1976)
  48. ^ Orlowski M, Meister A. The gamma-glutamyl cycle: a possible transport system for amino acidsProc Natl Acad Sci U S A. (1970)
  49. a b c Kern JK1, et al. A clinical trial of glutathione supplementation in autism spectrum disordersMed Sci Monit. (2011)
  50. ^ Sze G1, et al. Bidirectional membrane transport of intact glutathione in Hep G2 cellsAm J Physiol. (1993)
  51. ^ Benard O1, Balasubramanian KA. Effect of oxidant exposure on thiol status in the intestinal mucosaBiochem Pharmacol. (1993)
  52. ^ Lu SC1, et al. Bidirectional glutathione transport by cultured human retinal pigment epithelial cellsInvest Ophthalmol Vis Sci. (1995)
  53. ^ Kannan R1, et al. Identification of a novel, sodium-dependent, reduced glutathione transporter in the rat lens epitheliumInvest Ophthalmol Vis Sci. (1996)
  54. a b Pastore A1, et al. Analysis of glutathione: implication in redox and detoxificationClin Chim Acta. (2003)
  55. a b van Bladeren PJ. Glutathione conjugation as a bioactivation reactionChem Biol Interact. (2000)
  56. ^ Barycki JJ1, Colman RF. Identification of the nonsubstrate steroid binding site of rat liver glutathione S-transferase, isozyme 1-1, by the steroid affinity label, 3beta-(iodoacetoxy)dehydroisoandrosteroneArch Biochem Biophys. (1997)
  57. ^ Bogaards JJ1, Venekamp JC, van Bladeren PJ. Stereoselective conjugation of prostaglandin A2 and prostaglandin J2 with glutathione, catalyzed by the human glutathione S-transferases A1-1, A2-2, M1a-1a, and P1-1Chem Res Toxicol. (1997)
  58. ^ Eaton DL1, Bammler TK. Concise review of the glutathione S-transferases and their significance to toxicologyToxicol Sci. (1999)
  59. ^ Ramires PR1, Ji LL. Glutathione supplementation and training increases myocardial resistance to ischemia-reperfusion in vivoAm J Physiol Heart Circ Physiol. (2001)
  60. a b c d Morris D1, et al. Glutathione supplementation improves macrophage functions in HIVJ Interferon Cytokine Res. (2013)
  61. a b c Imlay JA. Cellular defenses against superoxide and hydrogen peroxideAnnu Rev Biochem. (2008)
  62. ^ Benrahmoune M1, Thérond P, Abedinzadeh Z. The reaction of superoxide radical with N-acetylcysteineFree Radic Biol Med. (2000)
  63. ^ Winterbourn CC1, Metodiewa D. The reaction of superoxide with reduced glutathioneArch Biochem Biophys. (1994)
  64. ^ Cardey B1, Foley S, Enescu M. Mechanism of thiol oxidation by the superoxide radicalJ Phys Chem A. (2007)
  65. ^ Ligeza A1, et al. Oxygen permeability of thylakoid membranes: electron paramagnetic resonance spin labeling studyBiochim Biophys Acta. (1998)
  66. ^ Abreu IA1, Cabelli DE. Superoxide dismutases-a review of the metal-associated mechanistic variationsBiochim Biophys Acta. (2010)
  67. ^ Hassan HM, Fridovich I. Chemistry and biochemistry of superoxide dismutasesEur J Rheumatol Inflamm. (1981)
  68. ^ Margis R1, et al. Glutathione peroxidase family – an evolutionary overviewFEBS J. (2008)
  69. ^ Messner KR1, Imlay JA. The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coliJ Biol Chem. (1999)
  70. ^ Bai J1, Cederbaum AI. Mitochondrial catalase and oxidative injuryBiol Signals Recept. (2001)
  71. ^ Lardinois OM1, Mestdagh MM, Rouxhet PG. Reversible inhibition and irreversible inactivation of catalase in presence of hydrogen peroxideBiochim Biophys Acta. (1996)
  72. ^ Ghadermarzi M1, Moosavi-Movahedi AA. Determination of the kinetic parameters for the “suicide substrate” inactivation of bovine liver catalase by hydrogen peroxideJ Enzyme Inhib. (1996)
  73. ^ Baud O1, et al. Glutathione peroxidase-catalase cooperativity is required for resistance to hydrogen peroxide by mature rat oligodendrocytesJ Neurosci. (2004)
  74. ^ Sauer H1, Wartenberg M, Hescheler J. Reactive oxygen species as intracellular messengers during cell growth and differentiationCell Physiol Biochem. (2001)
  75. ^ Henle ES1, et al. Sequence-specific DNA cleavage by Fe2+-mediated fenton reactions has possible biological implicationsJ Biol Chem. (1999)
  76. ^ Imlay JA1, Chin SM, Linn S. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitroScience. (1988)
  77. ^ Holmes EW1, et al. Glutathione content of colonic mucosa: evidence for oxidative damage in active ulcerative colitisDig Dis Sci. (1998)
  78. ^ Iantomasi T1, et al. Glutathione metabolism in Crohn’s diseaseBiochem Med Metab Biol. (1994)
  79. ^ Lih-Brody L1, et al. Increased oxidative stress and decreased antioxidant defenses in mucosa of inflammatory bowel diseaseDig Dis Sci. (1996)
  80. ^ Loguercio C1, Di Pierro M. The role of glutathione in the gastrointestinal tract: a reviewItal J Gastroenterol Hepatol. (1999)
  81. ^ Ardite E1, et al. Replenishment of glutathione levels improves mucosal function in experimental acute colitisLab Invest. (2000)
  82. ^ Loguercio C1, et al. Glutathione supplementation improves oxidative damage in experimental colitisDig Liver Dis. (2003)
  83. ^ Guijarro LG1, et al. N-acetyl-L-cysteine combined with mesalamine in the treatment of ulcerative colitis: randomized, placebo-controlled pilot studyWorld J Gastroenterol. (2008)
  84. ^ Mora-Esteves C1, Shin D. Nutrient supplementation: improving male fertility fourfoldSemin Reprod Med. (2013)
  85. ^ Hansen JC1, Deguchi Y. Selenium and fertility in animals and man–a reviewActa Vet Scand. (1996)
  86. ^ Ursini F1, et al. Dual function of the selenoprotein PHGPx during sperm maturationScience. (1999)
  87. ^ Lenzi A1, et al. Placebo-controlled, double-blind, cross-over trial of glutathione therapy in male infertilityHum Reprod. (1993)
  88. ^ Oeda T1, et al. Scavenging effect of N-acetyl-L-cysteine against reactive oxygen species in human semen: a possible therapeutic modality for male factor infertilityAndrologia. (1997)
  89. ^ Ciftci H1, et al. Effects of N-acetylcysteine on semen parameters and oxidative/antioxidant statusUrology. (2009)
  90. ^ Lang CA1, et al. Low blood glutathione levels in healthy aging adultsJ Lab Clin Med. (1992)
  91. ^ Matsubara LS1, Machado PE. Age-related changes of glutathione content, glutathione reductase and glutathione peroxidase activity of human erythrocytesBraz J Med Biol Res. (1991)
  92. ^ Erden-Inal M1, Sunal E, Kanbak G. Age-related changes in the glutathione redox systemCell Biochem Funct. (2002)
  93. ^ Rebrin I1, Sohal RS. Pro-oxidant shift in glutathione redox state during agingAdv Drug Deliv Rev. (2008)
  94. a b Liu RM1, Dickinson DA. Decreased synthetic capacity underlies the age-associated decline in glutathione content in Fisher 344 ratsAntioxid Redox Signal. (2003)
  95. a b c d Sekhar RV1, et al. Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementationAm J Clin Nutr. (2011)
  96. ^ Morais JA1, et al. Whole-body protein turnover in the healthy elderlyAm J Clin Nutr. (1997)
  97. ^ Fereday A1, et al. Protein requirements and ageing: metabolic demand and efficiency of utilizationBr J Nutr. (1997)
  98. ^ Jackson AA1, et al. Synthesis of erythrocyte glutathione in healthy adults consuming the safe amount of dietary proteinAm J Clin Nutr. (2004)
  99. ^ Lyons J1, et al. Blood glutathione synthesis rates in healthy adults receiving a sulfur amino acid-free dietProc Natl Acad Sci U S A. (2000)
  100. ^ Sonthalia S, Daulatabad D, Sarkar R. Glutathione as a skin whitening agent: Facts, myths, evidence and controversiesIndian J Dermatol Venereol Leprol. (2016)
  101. ^ Dilokthornsakul W, Dhippayom T, Dilokthornsakul P. The clinical effect of glutathione on skin color and other related skin conditions: A systematic reviewJ Cosmet Dermatol. (2019)
  102. ^ Arjinpathana N, Asawanonda P. Glutathione as an oral whitening agent: a randomized, double-blind, placebo-controlled studyJ Dermatolog Treat. (2012)
  103. ^ Watanabe F, et al. Skin-whitening and skin-condition-improving effects of topical oxidized glutathione: a double-blind and placebo-controlled clinical trial in healthy womenClin Cosmet Investig Dermatol. (2014)
  104. ^ Weschawalit S, et al. Glutathione and its antiaging and antimelanogenic effectsClin Cosmet Investig Dermatol. (2017)
  105. a b Chauhan A1, et al. Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin–the antioxidant proteinsLife Sci. (2004)
  106. ^ Chauhan A1, Chauhan V. Oxidative stress in autismPathophysiology. (2006)
  107. ^ Ghanizadeh A1, et al. Glutathione-related factors and oxidative stress in autism, a reviewCurr Med Chem. (2012)
  108. a b Al-Yafee YA1, et al. Novel metabolic biomarkers related to sulfur-dependent detoxification pathways in autistic patients of Saudi ArabiaBMC Neurol. (2011)
  109. ^ Geier DA1, et al. A prospective study of transsulfuration biomarkers in autistic disordersNeurochem Res. (2009)
  110. a b c Adams JB1, et al. Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severityNutr Metab (Lond). (2011)
  111. ^ James SJ1, et al. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autismAm J Clin Nutr. (2004)
  112. ^ Yorbik O1, et al. Investigation of antioxidant enzymes in children with autistic disorderProstaglandins Leukot Essent Fatty Acids. (2002)
  113. ^ Al-Gadani Y1, et al. Metabolic biomarkers related to oxidative stress and antioxidant status in Saudi autistic childrenClin Biochem. (2009)
  114. ^ Scott BC1, et al. Lipoic and dihydrolipoic acids as antioxidants. A critical evaluationFree Radic Res. (1994)
  115. ^ Shay KP1, et al. Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potentialBiochim Biophys Acta. (2009)
  116. ^ Han D1, et al. Lipoic acid increases de novo synthesis of cellular glutathione by improving cystine utilizationBiofactors. (1997)
  117. a b Bast A1, Haenen GR. Interplay between lipoic acid and glutathione in the protection against microsomal lipid peroxidationBiochim Biophys Acta. (1988)
  118. a b Busse E1, et al. Influence of alpha-lipoic acid on intracellular glutathione in vitro and in vivoArzneimittelforschung. (1992)
  119. ^ Suh JH1, et al. (R)-alpha-lipoic acid reverses the age-related loss in GSH redox status in post-mitotic tissues: evidence for increased cysteine requirement for GSH synthesisArch Biochem Biophys. (2004)
  120. ^ Wu GY, Brosnan JT. Macrophages can convert citrulline into arginineBiochem J. (1992)
  121. a b c McKinley-Barnard S, et al. Combined L-citrulline and glutathione supplementation increases the concentration of markers indicative of nitric oxide synthesisJ Int Soc Sports Nutr. (2015)