1. a b Parsons A, et al. A proof of concept randomised placebo controlled factorial trial to examine the efficacy of St John’s wort for smoking cessation and chromium to prevent weight gain on smoking cessationDrug Alcohol Depend. (2009)
  2. a b c d Lukaski HC. Chromium as a supplementAnnu Rev Nutr. (1999)
  3. a b c Yamamoto A, Wada O, Suzuki H. Purification and properties of biologically active chromium complex from bovine colostrumJ Nutr. (1988)
  4. ^ Yamamoto A, Wada O, Suzuki H. Separation of biologically active chromium complex from cow colostrumTohoku J Exp Med. (1987)
  5. a b Hexavalent Chromium.
  6. a b c Trumbo P, et al. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zincJ Am Diet Assoc. (2001)
  7. ^ Iyengar V, Woittiez J. Trace elements in human clinical specimens: evaluation of literature data to identify reference valuesClin Chem. (1988)
  8. a b Freund H, Atamian S, Fischer JE. Chromium deficiency during total parenteral nutritionJAMA. (1979)
  9. a b Jeejeebhoy KN, et al. Chromium deficiency, glucose intolerance, and neuropathy reversed by chromium supplementation, in a patient receiving long-term total parenteral nutritionAm J Clin Nutr. (1977)
  10. ^ Davies S, et al. Age-related decreases in chromium levels in 51,665 hair, sweat, and serum samples from 40,872 patients–implications for the prevention of cardiovascular disease and type II diabetes mellitusMetabolism. (1997)
  11. ^ Sundararaman PG, et al. Serum chromium levels in gestational diabetes mellitusIndian J Endocrinol Metab. (2012)
  12. ^ Woods SE, et al. Serum chromium and gestational diabetesJ Am Board Fam Med. (2008)
  13. ^ Kozlovsky AS, et al. Effects of diets high in simple sugars on urinary chromium lossesMetabolism. (1986)
  14. ^ Hajifaraji M, Leeds AR. The effect of high and low glycemic index diets on urinary chromium in healthy individuals: a cross-over studyArch Iran Med. (2008)
  15. a b c d Vincent JB. The biochemistry of chromiumJ Nutr. (2000)
  16. ^ Davis CM, Vincent JB. Isolation and characterization of a biologically active chromium oligopeptide from bovine liverArch Biochem Biophys. (1997)
  17. a b Clodfelder BJ, et al. The trail of chromium(III) in vivo from the blood to the urine: the roles of transferrin and chromodulinJ Biol Inorg Chem. (2001)
  18. ^ Anderson RA, et al. Urinary chromium excretion of human subjects: effects of chromium supplementation and glucose loadingAm J Clin Nutr. (1982)
  19. a b Anderson RA, et al. Effect of Exercise (Running) on Serum Glucose, Insulin, Glucagon, and Chromium ExcretionDiabetes. (1982)
  20. ^ Wahren J, et al. Glucose metabolism during leg exercise in manJ Clin Invest. (1971)
  21. a b Bagchi D, et al. Comparative induction of oxidative stress in cultured J774A.1 macrophage cells by chromium picolinate and chromium nicotinateRes Commun Mol Pathol Pharmacol. (1997)
  22. ^ Wise SS, Holmes AL, Wise JP Sr. Hexavalent chromium-induced DNA damage and repair mechanismsRev Environ Health. (2008)
  23. ^ Zhang XH, et al. Chronic occupational exposure to hexavalent chromium causes DNA damage in electroplating workersBMC Public Health. (2011)
  24. ^ Kingry KF, Royer AC, Vincent JB. Nuclear magnetic resonance studies of chromium(III) pyridinecarboxylate complexesJ Inorg Biochem. (1998)
  25. ^ Stearns DM, Armstrong WH. Mononuclear and binuclear chromium(III) picolinate complexesInorg Chem. (1992)
  26. ^ Yuen G, Heaster H, Hoggard PE. Amine spectrochemical properties in tris(aminocarboxylate) complexes of chromium(III)Inorg Chim Acta. (1983)
  27. a b c Speetjens JK, et al. The nutritional supplement chromium(III) tris(picolinate) cleaves DNAChem Res Toxicol. (1999)
  28. ^ Raspor P, et al. The influence of chromium compounds on yeast physiology (a review)Acta Microbiol Immunol Hung. (2000)
  29. ^ Pas M, et al. Uptake of chromium(III) and chromium(VI) compounds in the yeast cell structureBiometals. (2004)
  30. a b Grant AP, McMullen JK. The effect of brewers yeast containing glucose tolerance factor on the response to treatment in Type 2 diabetics. A short controlled studyUlster Med J. (1982)
  31. ^ Schwarz K, Mertz W. A glucose tolerance factor and its differentiation from factor 3Arch Biochem Biophys. (1957)
  32. ^ Mirsky N, Weiss A, Dori Z. Chromium in biological systems, I. Some observations on glucose tolerance factor in yeastJ Inorg Biochem. (1980)
  33. ^ Weksler-Zangen S, et al. Glucose tolerance factor extracted from yeast: oral insulin-mimetic and insulin-potentiating agent: in vivo and in vitro studiesBr J Nutr. (2012)
  34. ^ Toepfer EW, et al. Preparation of chromium-containing material of glucose tolerance factor activity from brewer’s yeast extracts and by synthesisJ Agric Food Chem. (1976)
  35. a b c d Preuss HG, et al. Effects of niacin-bound chromium and grape seed proanthocyanidin extract on the lipid profile of hypercholesterolemic subjects: a pilot studyJ Med. (2000)
  36. a b Thomas VL, Gropper SS. Effect of chromium nicotinic acid supplementation on selected cardiovascular disease risk factorsBiol Trace Elem Res. (1996)
  37. ^ Jain SK, et al. Effect of chromium dinicocysteinate supplementation on circulating levels of insulin, TNF-α, oxidative stress, and insulin resistance in type 2 diabetic subjects: randomized, double-blind, placebo-controlled studyMol Nutr Food Res. (2012)
  38. a b Hua Y, et al. Molecular mechanisms of chromium in alleviating insulin resistanceJ Nutr Biochem. (2012)
  39. a b Yamamoto A, Wada O, Ono T. Isolation of a biologically active low-molecular-mass chromium compound from rabbit liverEur J Biochem. (1987)
  40. a b Vincent JB. Quest for the molecular mechanism of chromium action and its relationship to diabetesNutr Rev. (2000)
  41. ^ Yamamoto A, Wada O, Ono T. A low-molecular-weight, chromium-binding substance in mammalsToxicol Appl Pharmacol. (1981)
  42. a b Chen Y, et al. Characterization of the organic component of low-molecular-weight chromium-binding substance and its binding of chromiumJ Nutr. (2011)
  43. a b c Davis CM, Vincent JB. Chromium oligopeptide activates insulin receptor tyrosine kinase activityBiochemistry. (1997)
  44. a b Yamamoto A, Wada O, Manabe S. Evidence that chromium is an essential factor for biological activity of low-molecular-weight, chromium-binding substanceBiochem Biophys Res Commun. (1989)
  45. a b Myers MG Jr, White MF. The new elements of insulin signaling. Insulin receptor substrate-1 and proteins with SH2 domainsDiabetes. (1993)
  46. ^ Vincent JB. Recent advances in the nutritional biochemistry of trivalent chromiumProc Nutr Soc. (2004)
  47. ^ Vincent JB. Chromium: celebrating 50 years as an essential elementDalton Trans. (2010)
  48. ^ Rutter GA, Da Silva Xavier G, Leclerc I. Roles of 5′-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasisBiochem J. (2003)
  49. ^ Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell functionGenes Dev. (2011)
  50. ^ Zhao P, et al. A newly synthetic chromium complex-chromium (D-phenylalanine)3 activates AMP-activated protein kinase and stimulates glucose transportBiochem Pharmacol. (2009)
  51. a b Anderson RA, Kozlovsky AS. Chromium intake, absorption and excretion of subjects consuming self-selected dietsAm J Clin Nutr. (1985)
  52. ^ Bunker VW, et al. The uptake and excretion of chromium by the elderlyAm J Clin Nutr. (1984)
  53. a b Chen NS, Tsai A, Dyer IA. Effect of chelating agents on chromium absorption in ratsJ Nutr. (1973)
  54. ^ Hahn CJ, Evans GW. Absorption of trace metals in the zinc-deficient ratAm J Physiol. (1975)
  55. ^ Laschinsky N, et al. Bioavailability of chromium(III)-supplements in rats and humansBiometals. (2012)
  56. a b c d e f g h Cefalu WT, et al. Characterization of the metabolic and physiologic response to chromium supplementation in subjects with type 2 diabetes mellitusMetabolism. (2010)
  57. ^ HOPKINS LL Jr, SCHWARZ K. CHROMIUM (3) BINDING TO SERUM PROTEINS, SPECIFICALLY SIDEROPHILINBiochim Biophys Acta. (1964)
  58. ^ Ainscough EW, et al. Studies on human lactoferrin by electron paramagnetic resonance, fluorescence, and resonance Raman spectroscopyBiochemistry. (1980)
  59. a b Aisen P, Aasa R, Redfield AG. The chromium, manganese, and cobalt complexes of transferrinJ Biol Chem. (1969)
  60. a b Sun Y, et al. The binding of trivalent chromium to low-molecular-weight chromium-binding substance (LMWCr) and the transfer of chromium from transferrin and chromium picolinate to LMWCrJ Biol Inorg Chem. (2000)
  61. a b Yamamoto A, Wada O, Ono T. Distribution and chromium-binding capacity of a low-molecular-weight, chromium-binding substance in miceJ Inorg Biochem. (1984)
  62. ^ Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytesJ Cell Biol. (1983)
  63. a b c d Yoshida M, et al. Tissue accumulation and urinary excretion of chromium in rats fed diets containing graded levels of chromium chloride or chromium picolinateJ Toxicol Sci. (2010)
  64. ^ Seal CJ, Heaton FW. Effect of dietary picolinic acid on the metabolism of exogenous and endogenous zinc in the ratJ Nutr. (1985)
  65. a b McCarty MF. Longevity effect of chromium picolinate–‘rejuvenation’ of hypothalamic functionMed Hypotheses. (1994)
  66. ^ Evans GW. Chromium picolinate is an efficacious and safe supplementInt J Sport Nutr. (1993)
  67. ^ Mertz W. Chromium occurrence and function in biological systemsPhysiol Rev. (1969)
  68. ^ Offenbacher EG, Pi-Sunyer FX. Beneficial effect of chromium-rich yeast on glucose tolerance and blood lipids in elderly subjectsDiabetes. (1980)
  69. ^ Offenbacher EG, Rinko CJ, Pi-Sunyer FX. The effects of inorganic chromium and brewer’s yeast on glucose tolerance, plasma lipids, and plasma chromium in elderly subjectsAm J Clin Nutr. (1985)
  70. a b c d Franklin M, Odontiadis J. Effects of treatment with chromium picolinate on peripheral amino acid availability and brain monoamine function in the ratPharmacopsychiatry. (2003)
  71. ^ McCarty MF. Enhancing central and peripheral insulin activity as a strategy for the treatment of endogenous depression–an adjuvant role for chromium picolinateMed Hypotheses. (1994)
  72. ^ Hainer V, et al. Serotonin and norepinephrine reuptake inhibition and eating behaviorAnn N Y Acad Sci. (2006)
  73. a b c d e f g Attenburrow MJ, et al. Chromium treatment decreases the sensitivity of 5-HT2A receptorsPsychopharmacology (Berl). (2002)
  74. ^ Horácek J, et al. The relationship between central serotonergic activity and insulin sensitivity in healthy volunteersPsychoneuroendocrinology. (1999)
  75. ^ Palazidou E, et al. Noradrenaline uptake inhibition increases melatonin secretion, a measure of noradrenergic neurotransmission, in depressed patientsPsychol Med. (1992)
  76. ^ Pittler MH, Stevinson C, Ernst E. Chromium picolinate for reducing body weight: meta-analysis of randomized trialsInt J Obes Relat Metab Disord. (2003)
  77. a b Docherty JP, et al. A double-blind, placebo-controlled, exploratory trial of chromium picolinate in atypical depression: effect on carbohydrate cravingJ Psychiatr Pract. (2005)
  78. a b c Anton SD, et al. Effects of chromium picolinate on food intake and satietyDiabetes Technol Ther. (2008)
  79. ^ Singh T, Williams K. Atypical depressionPsychiatry (Edgmont). (2006)
  80. ^ Brownley KA, et al. A double-blind, randomized pilot trial of chromium picolinate for binge eating disorder: results of the Binge Eating and Chromium (BEACh) studyJ Psychosom Res. (2013)
  81. a b c Krikorian R, et al. Improved cognitive-cerebral function in older adults with chromium supplementationNutr Neurosci. (2010)
  82. ^ Amann BL, et al. A 2-year, open-label pilot study of adjunctive chromium in patients with treatment-resistant rapid-cycling bipolar disorderJ Clin Psychopharmacol. (2007)
  83. ^ McLeod MN, Gaynes BN, Golden RN. Chromium potentiation of antidepressant pharmacotherapy for dysthymic disorder in 5 patientsJ Clin Psychiatry. (1999)
  84. a b Davidson JR, et al. Effectiveness of chromium in atypical depression: a placebo-controlled trialBiol Psychiatry. (2003)
  85. ^ Guallar E, et al. Low toenail chromium concentration and increased risk of nonfatal myocardial infarctionAm J Epidemiol. (2005)
  86. a b Vrtovec M, et al. Chromium supplementation shortens QTc interval duration in patients with type 2 diabetes mellitusAm Heart J. (2005)
  87. ^ Linnemann B, Janka HU. Prolonged QTc interval and elevated heart rate identify the type 2 diabetic patient at high risk for cardiovascular death. The Bremen Diabetes StudyExp Clin Endocrinol Diabetes. (2003)
  88. ^ Okin PM, et al. Electrocardiographic repolarization complexity and abnormality predict all-cause and cardiovascular mortality in diabetes: the strong heart studyDiabetes. (2004)
  89. a b Ghosh D, et al. Role of chromium supplementation in Indians with type 2 diabetes mellitusJ Nutr Biochem. (2002)
  90. a b Jain SK, et al. Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetesDiabetes. (1989)
  91. ^ Jain SK, et al. Trivalent chromium inhibits protein glycosylation and lipid peroxidation in high glucose-treated erythrocytesAntioxid Redox Signal. (2006)
  92. a b c d e f g Abdollahi M, et al. Effect of chromium on glucose and lipid profiles in patients with type 2 diabetes; a meta-analysis review of randomized trialsJ Pharm Pharm Sci. (2013)
  93. ^ Gastaldelli A, et al. Influence of obesity and type 2 diabetes on gluconeogenesis and glucose output in humans: a quantitative studyDiabetes. (2000)
  94. a b c Pei D, et al. The influence of chromium chloride-containing milk to glycemic control of patients with type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled trialMetabolism. (2006)
  95. a b Wu GY, Wada O. Studies on a specific chromium binding substance (a low-molecular-weight chromium binding substance) in urine (author’s transl)Sangyo Igaku. (1981)
  96. ^ Wada O, et al. Low-molecular-weight, chromium-binding substance in rat lungs and its possible role in chromium movementInd Health. (1983)
  97. a b c d Wang H, Kruszewski A, Brautigan DL. Cellular chromium enhances activation of insulin receptor kinaseBiochemistry. (2005)
  98. a b c d Mackowiak P, et al. Evaluation of insulin binding and signaling activity of newly synthesized chromium(III) complexes in vitroMol Med Rep. (2010)
  99. ^ Ukkola O, Santaniemi M. Protein tyrosine phosphatase 1B: a new target for the treatment of obesity and associated co-morbiditiesJ Intern Med. (2002)
  100. ^ Davis CM, Sumrall KH, Vincent JB. A biologically active form of chromium may activate a membrane phosphotyrosine phosphatase (PTP)Biochemistry. (1996)
  101. ^ Goldstein BJ, et al. Enhancement of post-receptor insulin signaling by trivalent chromium in hepatoma cells is associated with differential inhibition of specific protein-tyrosine phosphatasesJ Trace Elem Exp Med. (2001)
  102. a b c Wang ZQ, et al. Chromium picolinate enhances skeletal muscle cellular insulin signaling in vivo in obese, insulin-resistant JCR:LA-cp ratsJ Nutr. (2006)
  103. a b Aguirre V, et al. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307)J Biol Chem. (2000)
  104. ^ Solinas G, et al. Saturated fatty acids inhibit induction of insulin gene transcription by JNK-mediated phosphorylation of insulin-receptor substratesProc Natl Acad Sci U S A. (2006)
  105. a b c Sreejayan N, et al. Chromium alleviates glucose intolerance, insulin resistance, and hepatic ER stress in obese miceObesity (Silver Spring). (2008)
  106. a b Chen WY, et al. Chromium supplementation enhances insulin signalling in skeletal muscle of obese KK/HlJ diabetic miceDiabetes Obes Metab. (2009)
  107. ^ Ozcan U, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetesScience. (2004)
  108. ^ Engin F, Hotamisligil GS. Restoring endoplasmic reticulum function by chemical chaperones: an emerging therapeutic approach for metabolic diseasesDiabetes Obes Metab. (2010)
  109. ^ Ozcan U, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetesScience. (2006)
  110. ^ Yang X, et al. Insulin-sensitizing and cholesterol-lowering effects of chromium (D-Phenylalanine)3J Inorg Biochem. (2006)
  111. ^ Evans GW, Bowman TD. Chromium picolinate increases membrane fluidity and rate of insulin internalizationJ Inorg Biochem. (1992)
  112. ^ Gorden P, et al. Intracellular translocation of iodine-125-labeled insulin: direct demonstration in isolated hepatocytesScience. (1978)
  113. ^ McClain DA. Mechanism and role of insulin receptor endocytosisAm J Med Sci. (1992)
  114. ^ Geiger D, et al. Down-regulation of insulin receptors is related to insulin internalizationExp Cell Res. (1989)
  115. ^ Iqbal N, et al. Chromium picolinate does not improve key features of metabolic syndrome in obese nondiabetic adultsMetab Syndr Relat Disord. (2009)
  116. ^ Morino K, Petersen KF, Shulman GI. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunctionDiabetes. (2006)
  117. ^ Patal PC, Cardino MT, Jimeno CA. A meta-analysis on the effect of chromium picolinate on glucose and lipid profiles among patients with type 2 diabetes mellitusPhilipp J Intern Med. (2010)
  118. a b Balk EM, et al. Effect of chromium supplementation on glucose metabolism and lipids: a systematic review of randomized controlled trialsDiabetes Care. (2007)
  119. ^ Broadhurst CL, Domenico P. Clinical studies on chromium picolinate supplementation in diabetes mellitus–a reviewDiabetes Technol Ther. (2006)
  120. a b c Frauchiger MT, Wenk C, Colombani PC. Effects of acute chromium supplementation on postprandial metabolism in healthy young menJ Am Coll Nutr. (2004)
  121. ^ Kleefstra N, et al. Chromium treatment has no effect in patients with type 2 diabetes in a Western population: a randomized, double-blind, placebo-controlled trialDiabetes Care. (2007)
  122. ^ Kleefstra N, et al. Chromium treatment has no effect in patients with poorly controlled, insulin-treated type 2 diabetes in an obese Western population: a randomized, double-blind, placebo-controlled trialDiabetes Care. (2006)
  123. ^ Lai MH. Antioxidant effects and insulin resistance improvement of chromium combined with vitamin C and e supplementation for type 2 diabetes mellitusJ Clin Biochem Nutr. (2008)
  124. a b Martin J, et al. Chromium picolinate supplementation attenuates body weight gain and increases insulin sensitivity in subjects with type 2 diabetesDiabetes Care. (2006)
  125. ^ Racek J, et al. Influence of chromium-enriched yeast on blood glucose and insulin variables, blood lipids, and markers of oxidative stress in subjects with type 2 diabetes mellitusBiol Trace Elem Res. (2006)
  126. ^ McIver DJ, et al. Risk of Type 2 Diabetes Is Lower in US Adults Taking Chromium-Containing SupplementsJ Nutr. (2015)
  127. ^ Joseph LJ, et al. Effect of resistance training with or without chromium picolinate supplementation on glucose metabolism in older men and womenMetabolism. (1999)
  128. a b Campbell WW, et al. Effects of resistive training and chromium picolinate on body composition and skeletal muscle size in older womenInt J Sport Nutr Exerc Metab. (2002)
  129. ^ Campbell WW, et al. Effects of resistance training and chromium picolinate on body composition and skeletal muscle in older menJ Appl Physiol (1985). (1999)
  130. a b Walker LS, et al. Chromium picolinate effects on body composition and muscular performance in wrestlersMed Sci Sports Exerc. (1998)
  131. ^ Hallmark MA, et al. Effects of chromium and resistive training on muscle strength and body compositionMed Sci Sports Exerc. (1996)
  132. ^ Livolsi JM, Adams GM, Laguna PL. The effect of chromium picolinate on muscular strength and body composition in women athletesJ Strength Cond Res. (2001)
  133. a b c Davis JM, Welsh RS, Alerson NA. Effects of carbohydrate and chromium ingestion during intermittent high-intensity exercise to fatigueInt J Sport Nutr Exerc Metab. (2000)
  134. a b Volek JS, et al. Effects of chromium supplementation on glycogen synthesis after high-intensity exerciseMed Sci Sports Exerc. (2006)
  135. ^ Roginski EE, Mertz W. Effects of Chromium (III) Supplementation on Glucose and Amino Acid Metabolism in Rats Fed a Low Protein DietJ Nutr.
  136. ^ Campbell WW, et al. Exercise training and dietary chromium effects on glycogen, glycogen synthase, phosphorylase and total protein in ratsJ Nutr. (1989)
  137. a b Tian H, et al. Chromium picolinate supplementation for overweight or obese adultsCochrane Database Syst Rev. (2013)
  138. ^ Meyers AW, et al. Are weight concerns predictive of smoking cessation? A prospective analysisJ Consult Clin Psychol. (1997)
  139. ^ Rhee YS, et al. The effects of chromium and copper supplementation on mitogen-stimulated T cell proliferation in hypercholesterolaemic postmenopausal womenClin Exp Immunol. (2002)
  140. a b Cheng HH, et al. Antioxidant effects of chromium supplementation with type 2 diabetes mellitus and euglycemic subjectsJ Agric Food Chem. (2004)
  141. a b Anderson RA, et al. Potential antioxidant effects of zinc and chromium supplementation in people with type 2 diabetes mellitusJ Am Coll Nutr. (2001)
  142. ^ Stearns DM, et al. Chromium(III) picolinate produces chromosome damage in Chinese hamster ovary cellsFASEB J. (1995)
  143. ^ Parand A, et al. DNA nicking by a trinuclear chromium complexInorg. Chim. Acta. (1998)
  144. ^ Hassoun EA, Stohs SJ. Chromium-induced production of reactive oxygen species, DNA single-strand breaks, nitric oxide production, and lactate dehydrogenase leakage in J774A.1 cell culturesJ Biochem Toxicol. (1995)
  145. ^ Sugden KD, Geer RD, Rogers SJ. Oxygen radical-mediated DNA damage by redox-active Cr(III) complexesBiochemistry. (1992)
  146. ^ Speetjens JK, et al. Low-molecular-weight chromium-binding substance and biomimetic {Cr3O(O2CCH2CH3)6(H2O)3}+ do not cleave DNA under physiologically-relevant conditionsPolyhedron. (1999)
  147. a b Kato I, et al. Effect of supplementation with chromium picolinate on antibody titers to 5-hydroxymethyl uracilEur J Epidemiol. (1998)
  148. ^ Shirnamé-Moré L, et al. Genetic effects of 5-hydroxymethyl-2′-deoxyuridine, a product of ionizing radiationMutat Res. (1987)
  149. a b Feng W, et al. Tissue contents and subcellular distribution of chromium and other trace metals in experimental diabetic rats after intravenous injection of Cr 50-enriched stable isotopic tracer solutionMetabolism. (2001)
  150. ^ Marouani N, et al. Effects of hexavalent chromium on reproductive functions of male adult ratsReprod Biol. (2012)
  151. ^ Carette D, et al. Hexavalent chromium at low concentration alters Sertoli cell barrier and connexin 43 gap junction but not claudin-11 and N-cadherin in the rat seminiferous tubule culture modelToxicol Appl Pharmacol. (2013)
  152. ^ Cheng RY, et al. Microarray analysis of altered gene expression in the TM4 Sertoli-like cell line exposed to chromium(III) chlorideReprod Toxicol. (2002)
  153. a b Mohamedshah FY, et al. Distribution of a stable isotope of chromium (53Cr) in serum, urine, and breast milk in lactating womenAm J Clin Nutr. (1998)
  154. ^ Kumpulainen J, et al. Dietary chromium intake of lactating Finnish mothers: effect on the Cr content of their breast milkBr J Nutr. (1980)
  155. a b c Anderson RA, et al. Breast milk chromium and its association with chromium intake, chromium excretion, and serum chromium.Am J Clin Nutr. (1993)
  156. ^ Kumpulainen J, Vuori E. Longitudinal study of chromium in human milk.Am J Clin Nutr. (1980)
  157. a b Casey CE, Hambidge KM. Chromium in human milk from American mothersBr J Nutr. (1984)
  158. ^ Mestre TA, Zurowski M, Fox SH. 5-Hydroxytryptamine 2A receptor antagonists as potential treatment for psychiatric disordersExpert Opin Investig Drugs. (2013)
  159. ^ Hockney RA, et al. Lack of effect of chromium supplementation on mental state and body weight in people with schizophreniaJ Clin Psychopharmacol. (2006)
  160. ^ Lydic ML, et al. Chromium picolinate improves insulin sensitivity in obese subjects with polycystic ovary syndromeFertil Steril. (2006)
  161. ^ Jamilian M, Asemi Z. Chromium Supplementation and the Effects on Metabolic Status in Women with Polycystic Ovary Syndrome: A Randomized, Double-Blind, Placebo-Controlled TrialAnn Nutr Metab. (2015)
  162. ^ Jamilian M, et al. The Effects of Chromium Supplementation on Endocrine Profiles, Biomarkers of Inflammation, and Oxidative Stress in Women with Polycystic Ovary Syndrome: a Randomized, Double-Blind, Placebo-Controlled TrialBiol Trace Elem Res. (2016)
  163. ^ Yang J, Black J. Competitive binding of chromium, cobalt and nickel to serum proteinsBiomaterials. (1994)
  164. ^ Ani M, Moshtaghie AA. The effect of chromium on parameters related to iron metabolismBiol Trace Elem Res. (1992)
  165. ^ Lukaski HC, Siders WA, Penland JG. Chromium picolinate supplementation in women: effects on body weight, composition, and iron statusNutrition. (2007)
  166. ^ Król E, et al. Effects of chromium brewer’s yeast supplementation on body mass, blood carbohydrates, and lipids and minerals in type 2 diabetic patientsBiol Trace Elem Res. (2011)
  167. ^ Preuss HG, Bagchi D, Bagchi M. Protective effects of a novel niacin-bound chromium complex and a grape seed proanthocyanidin extract on advancing age and various aspects of syndrome XAnn N Y Acad Sci. (2002)
  168. ^ Diplock AT. Antioxidant nutrients and disease prevention: an overviewAm J Clin Nutr. (1991)
  169. ^ Campbell WW, et al. Resistive training and chromium picolinate: effects on inositols and liver and kidney functions in older adultsInt J Sport Nutr Exerc Metab. (2004)
  170. ^ Chen SY, Lien TF. Toxicity evaluation of chromium picolinate nanoparticles in vivo and in vitro in ratBiol Trace Elem Res. (2013)
  171. ^ Anderson RA, Bryden NA, Polansky MM. Lack of toxicity of chromium chloride and chromium picolinate in ratsJ Am Coll Nutr. (1997)
  172. ^ Cerulli J, et al. Chromium picolinate toxicityAnn Pharmacother. (1998)
  173. ^ Martin WR, Fuller RE. Suspected chromium picolinate-induced rhabdomyolysisPharmacotherapy. (1998)
  174. Bahijiri SM, et al. The effects of inorganic chromium and brewer’s yeast supplementation on glucose tolerance, serum lipids and drug dosage in individuals with type 2 diabetesSaudi Med J. (2000)
  175. Anderson RA, et al. Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetesDiabetes. (1997)
  176. Kim CW, et al. Effects of short-term chromium supplementation on insulin sensitivity and body composition in overweight children: randomized, double-blind, placebo-controlled studyJ Nutr Biochem. (2011)
  177. Feiner JJ, et al. Chromium picolinate for insulin resistance in subjects with HIV disease: a pilot studyDiabetes Obes Metab. (2008)
  178. Gunton JE, et al. Chromium supplementation does not improve glucose tolerance, insulin sensitivity, or lipid profile: a randomized, placebo-controlled, double-blind trial of supplementation in subjects with impaired glucose toleranceDiabetes Care. (2005)
  179. Paiva AN, et al. Beneficial effects of oral chromium picolinate supplementation on glycemic control in patients with type 2 diabetes: A randomized clinical studyJ Trace Elem Med Biol. (2015)
  180. Yazaki Y, et al. A pilot study of chromium picolinate for weight lossJ Altern Complement Med. (2010)
  181. Ali A, et al. Chromium effects on glucose tolerance and insulin sensitivity in persons at risk for diabetes mellitusEndocr Pract. (2011)
  182. Sharma S, et al. Beneficial effect of chromium supplementation on glucose, HbA1C and lipid variables in individuals with newly onset type-2 diabetesJ Trace Elem Med Biol. (2011)
  183. Aghdassi E, et al. In patients with HIV-infection, chromium supplementation improves insulin resistance and other metabolic abnormalities: a randomized, double-blind, placebo controlled trialCurr HIV Res. (2010)
  184. Brownley KA, et al. Chromium supplementation for menstrual cycle-related mood symptomsJ Diet Suppl. (2013)