1. a b c Chapman-Smith A1, Cronan JE Jr. Molecular biology of biotin attachment to proteinsJ Nutr. (1999)
  2. a b c d e Lanska DJ. The discovery of niacin, biotin, and pantothenic acidAnn Nutr Metab. (2012)
  3. ^ Chapman-Smith A1, Cronan JE Jr. The enzymatic biotinylation of proteins: a post-translational modification of exceptional specificityTrends Biochem Sci. (1999)
  4. a b c Tong L. Structure and function of biotin-dependent carboxylasesCell Mol Life Sci. (2013)
  5. ^ Knowles JR. The mechanism of biotin-dependent enzymesAnnu Rev Biochem. (1989)
  6. a b Tong L1, Harwood HJ Jr. Acetyl-coenzyme A carboxylases: versatile targets for drug discoveryJ Cell Biochem. (2006)
  7. ^ Huang CS1, et al. Crystal structure of the alpha(6)beta(6) holoenzyme of propionyl-coenzyme A carboxylaseNature. (2010)
  8. ^ Xiang S1, Tong L. Crystal structures of human and Staphylococcus aureus pyruvate carboxylase and molecular insights into the carboxyltransfer reactionNat Struct Mol Biol. (2008)
  9. ^ Depeint F1, et al. Mitochondrial function and toxicity: role of the B vitamin family on mitochondrial energy metabolismChem Biol Interact. (2006)
  10. a b c d Hymes J1, Wolf B. Human biotinidase isn’t just for recycling biotinJ Nutr. (1999)
  11. ^ Pispa J. Animal biotinidaseAnn Med Exp Biol Fenn. (1965)
  12. a b Shriver BJ1, Roman-Shriver C, Allred JB. Depletion and repletion of biotinyl enzymes in liver of biotin-deficient rats: evidence of a biotin storage systemJ Nutr. (1993)
  13. a b Hymes J1, Fleischhauer K, Wolf B. Biotinylation of histones by human serum biotinidase: assessment of biotinyl-transferase activity in sera from normal individuals and children with biotinidase deficiencyBiochem Mol Med. (1995)
  14. ^ Kuroishi T1, et al. Biotinylation is a natural, albeit rare, modification of human histonesMol Genet Metab. (2011)
  15. ^ Healy S1, et al. Nonenzymatic biotinylation of histone H2AProtein Sci. (2009)
  16. a b Eng WK1, et al. Identification and assessment of markers of biotin status in healthy adultsBr J Nutr. (2013)
  17. ^ Mock NI1, et al. Increased urinary excretion of 3-hydroxyisovaleric acid and decreased urinary excretion of biotin are sensitive early indicators of decreased biotin status in experimental biotin deficiencyAm J Clin Nutr. (1997)
  18. ^ Mock DM1. Biotin status: which are valid indicators and how do we knowJ Nutr. (1999)
  19. ^ Mock DM1, et al. Indicators of marginal biotin deficiency and repletion in humans: validation of 3-hydroxyisovaleric acid excretion and a leucine challengeAm J Clin Nutr. (2002)
  20. ^ Nisenson A. Seborrheic dermatitis of infants: treatment with biotin injections for the nursing motherPediatrics. (1969)
  21. ^ Wolf B. Biotinidase deficiency: “if you have to have an inherited metabolic disease, this is the one to have”Genet Med. (2012)
  22. ^ Cowan TM1, Blitzer MG, Wolf B; Working Group of the American College of Medical Genetics Laboratory Quality Assurance Committee. Technical standards and guidelines for the diagnosis of biotinidase deficiencyGenet Med. (2010)
  23. a b c Wolf B. Worldwide survey of neonatal screening for biotinidase deficiencyJ Inherit Metab Dis. (1991)
  24. ^ Kresge N, Simoni RD, Hill RL. The Discovery of Avidin by Esmond E. SnellJ Biol Chem. (2004)
  26. ^ Baugh CM, Malone JH, Butterworth CE Jr. Human biotin deficiency. A case history of biotin deficiency induced by raw egg consumption in a cirrhotic patientAm J Clin Nutr. (1968)
  28. ^ Murthy CV, Adiga PR. Purification of biotin-binding protein from chicken egg yolk and comparison with avidinBiochim Biophys Acta. (1984)
  29. ^ White HB 3rd, et al. Biotin-binding protein from chicken egg yolk. Assay and relationship to egg-white avidinBiochem J. (1976)
  30. a b Vesely DL, Kemp SF, Elders MJ. Isolation of a biotin receptor from hepatic plasma membranesBiochem Biophys Res Commun. (1987)
  31. ^ Leamon CP1, Low PS. Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosisProc Natl Acad Sci U S A. (1991)
  32. ^ Wuerges J1, Geremia S, Randaccio L. Structural study on ligand specificity of human vitamin B12 transportersBiochem J. (2007)
  33. ^ Horn MA1, Heinstein PF, Low PS. Biotin-mediated delivery of exogenous macromolecules into soybean cellsPlant Physiol. (1990)
  34. a b Russell-Jones G1, et al. Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumoursJ Inorg Biochem. (2004)
  35. ^ Yellepeddi VK1, Kumar A, Palakurthi S. Biotinylated poly(amido)amine (PAMAM) dendrimers as carriers for drug delivery to ovarian cancer cells in vitroAnticancer Res. (2009)
  36. a b Chauhan J, Dakshinamurti K. Role of human serum biotinidase as biotin-binding proteinBiochem J. (1988)
  37. ^ Said HM1, Redha R, Nylander W. A carrier-mediated, Na+ gradient-dependent transport for biotin in human intestinal brush-border membrane vesiclesAm J Physiol. (1987)
  38. a b Said HM1, Redha R. Biotin transport in rat intestinal brush-border membrane vesiclesBiochim Biophys Acta. (1988)
  39. ^ Said HM1, Derweesh I. Carrier-mediated mechanism for biotin transport in rabbit intestine: studies with brush-border membrane vesiclesAm J Physiol. (1991)
  40. a b c d Balamurugan K1, Ortiz A, Said HM. Biotin uptake by human intestinal and liver epithelial cells: role of the SMVT systemAm J Physiol Gastrointest Liver Physiol. (2003)
  41. a b c Prasad PD1, et al. Cloning and functional expression of a cDNA encoding a mammalian sodium-dependent vitamin transporter mediating the uptake of pantothenate, biotin, and lipoateJ Biol Chem. (1998)
  42. ^ Subramanian VS1, et al. Membrane targeting and intracellular trafficking of the human sodium-dependent multivitamin transporter in polarized epithelial cellsAm J Physiol Cell Physiol. (2009)
  43. a b c d e Subramanya SB1, et al. Inhibition of intestinal biotin absorption by chronic alcohol feeding: cellular and molecular mechanismsAm J Physiol Gastrointest Liver Physiol. (2011)
  44. ^ Branner GR1, Roth-Maier DA. Influence of pre-, pro-, and synbiotics on the intestinal availability of different B-vitaminsArch Anim Nutr. (2006)
  45. ^ Wang H1, et al. Human placental Na+-dependent multivitamin transporter. Cloning, functional expression, gene structure, and chromosomal localizationJ Biol Chem. (1999)
  46. a b c Said HM1, Horne DW, Mock DM. Effect of aging on intestinal biotin transport in the ratExp Gerontol. (1990)
  47. ^ Said HM1, Mock DM, Collins JC. Regulation of intestinal biotin transport in the rat: effect of biotin deficiency and supplementationAm J Physiol. (1989)
  48. ^ León-Del-Río A1, Hol-Soto-Borja D, Velázquez A. Studies on the mechanism of biotin uptake by brush-border membrane vesicles of hamster enterocytesArch Med Res. (1993)
  49. a b Zempleni J1, Mock DM. Uptake and metabolism of biotin by human peripheral blood mononuclear cellsAm J Physiol. (1998)
  50. a b c d e f g Grafe F1, et al. Transport of biotin in human keratinocytesJ Invest Dermatol. (2003)
  51. a b Makino Y1, et al. Percutaneous absorption of biotin in healthy subjects and in atopic dermatitis patientsJ Nutr Sci Vitaminol (Tokyo). (1999)
  52. a b Gilby ED, Taylor KJ. Ultrasound monitoring of hepatic metastases during chemotherapyBr Med J. (1975)
  53. ^ Mock DM1, Lankford GL, Mock NI. Biotin accounts for only half of the total avidin-binding substances in human serumJ Nutr. (1995)
  54. a b Mock DM1, Lankford GL, Cazin J Jr. Biotin and biotin analogs in human urine: biotin accounts for only half of the totalJ Nutr. (1993)
  55. ^ Zempleni J1, McCormick DB, Mock DM. Identification of biotin sulfone, bisnorbiotin methyl ketone, and tetranorbiotin-l-sulfoxide in human urineAm J Clin Nutr. (1997)
  56. ^ Bogusiewicz A1, et al. Biotin accounts for less than half of all biotin and biotin metabolites in the cerebrospinal fluid of childrenAm J Clin Nutr. (2008)
  57. a b Marshall MW, et al. Effects of biotin on lipids and other constituents of plasma of healthy men and womenArtery. (1980)
  58. ^ Beinlich CJ1, et al. Myocardial metabolism of pantothenic acid in chronically diabetic ratsJ Mol Cell Cardiol. (1990)
  59. ^ Baur B1, Wick H, Baumgartner ER. Na(+)-dependent biotin transport into brush-border membrane vesicles from rat kidneyAm J Physiol. (1990)
  60. ^ Baur B1, Baumgartner ER. Biotin and biocytin uptake into cultured primary calf brain microvessel endothelial cells of the blood-brain barrierBrain Res. (2000)
  61. ^ Said HM1, et al. Transport of biotin in basolateral membrane vesicles of rat liverAm J Physiol. (1990)
  62. ^ Grassl SM. Human placental brush-border membrane Na(+)-biotin cotransportJ Biol Chem. (1992)
  63. ^ Prasad PD1, et al. Molecular and functional characterization of the intestinal Na+-dependent multivitamin transporterArch Biochem Biophys. (1999)
  64. a b c Krause KH, et al. Biotin status of epilepticsAnn N Y Acad Sci. (1985)
  65. a b c d Castro-Gago M1, et al. Serum biotinidase activity in children treated with valproic acid and carbamazepineJ Child Neurol. (2010)
  66. a b Castro-Gago M1, et al. The influence of valproic acid and carbamazepine treatment on serum biotin and zinc levels and on biotinidase activityJ Child Neurol. (2011)
  67. a b Suchy SF, Wolf B. Effect of biotin deficiency and supplementation on lipid metabolism in rats: cholesterol and lipoproteinsAm J Clin Nutr. (1986)
  68. a b Larrieta E1, et al. Pharmacological concentrations of biotin reduce serum triglycerides and the expression of lipogenic genesEur J Pharmacol. (2010)
  69. a b Aguilera-Méndez A1, Fernández-Mejía C. The hypotriglyceridemic effect of biotin supplementation involves increased levels of cGMP and AMPK activationBiofactors. (2012)
  70. ^ Ha J1, et al. Critical phosphorylation sites for acetyl-CoA carboxylase activityJ Biol Chem. (1994)
  71. ^ Dokusova OK, Krivoruchenko IV. The effect of biotin on the level of cholesterol in the blood of patients with atherosclerosis and essential hyperlipidemiaKardiologiia. (1972)
  72. a b Revilla-Monsalve C1, et al. Biotin supplementation reduces plasma triacylglycerol and VLDL in type 2 diabetic patients and in nondiabetic subjects with hypertriglyceridemiaBiomed Pharmacother. (2006)
  73. ^ Sarabu R1, Grimsby J. Targeting glucokinase activation for the treatment of type 2 diabetes–a status reviewCurr Opin Drug Discov Devel. (2005)
  74. a b c d Dakshinamurti K, Cheah-Tan C. Liver glucokinase of the biotin deficient ratCan J Biochem. (1968)
  75. a b Dakshinamurti K, Tarrago-Litvak L, Hong HC. Biotin and glucose metabolismCan J Biochem. (1970)
  76. a b c Spence JT, Koudelka AP. Effects of biotin upon the intracellular level of cGMP and the activity of glucokinase in cultured rat hepatocytesJ Biol Chem. (1984)
  77. ^ Agius L. Control of glucokinase translocation in rat hepatocytes by sorbitol and the cytosolic redox stateBiochem J. (1994)
  78. ^ Davagnino J, Ureta T. The identification of extrahepatic “glucokinase” as N-acetylglucosamine kinaseJ Biol Chem. (1980)
  79. ^ Spence JT, Pitot HC. Induction of lipogenic enzymes in primary cultures of rat hepatocytes. Relationship between lipogenesis and carbohydrate metabolismEur J Biochem. (1982)
  80. ^ Chauhan J1, Dakshinamurti K. Transcriptional regulation of the glucokinase gene by biotin in starved ratsJ Biol Chem. (1991)
  81. ^ Dakshinamurti K, Cheah-Tan C. Biotin-mediated synthesis of hepatic glucokinase in the ratArch Biochem Biophys. (1968)
  82. a b Vilches-Flores A1, et al. Biotin increases glucokinase expression via soluble guanylate cyclase/protein kinase G, adenosine triphosphate production and autocrine action of insulin in pancreatic rat isletsJ Nutr Biochem. (2010)
  83. ^ De La Vega LA1, Stockert RJ. Regulation of the insulin and asialoglycoprotein receptors via cGMP-dependent protein kinaseAm J Physiol Cell Physiol. (2000)
  84. a b c d Lazo de la Vega-Monroy ML1, et al. Effects of biotin supplementation in the diet on insulin secretion, islet gene expression, glucose homeostasis and beta-cell proportionJ Nutr Biochem. (2013)
  85. ^ Sasaki Y, et al. Administration of biotin prevents the development of insulin resistance in the skeletal muscles of Otsuka Long-Evans Tokushima Fatty ratsFood Funct. (2012)
  86. ^ Koutsikos D1, Agroyannis B, Tzanatos-Exarchou H. Biotin for diabetic peripheral neuropathyBiomed Pharmacother. (1990)
  87. ^ Krause KH, Berlit P, Bonjour JP. Impaired biotin status in anticonvulsant therapyAnn Neurol. (1982)
  88. a b Bonjour JP. Vitamins and alcoholism. V. Riboflavin, VI. Niacin, VII. Pantothenic acid, and VIII. BiotinInt J Vitam Nutr Res. (1980)
  89. ^ THOMPSON RH, BUTTERFIELD WJ, FRY IK. Pyruvate metabolism in diabetic neuropathyProc R Soc Med. (1960)
  90. a b c d e Xu C1, et al. Selective overexpression of human SIRT1 in adipose tissue enhances energy homeostasis and prevents the deterioration of insulin sensitivity with ageing in miceAm J Transl Res. (2013)
  91. ^ Law IK1, et al. Identification and characterization of proteins interacting with SIRT1 and SIRT3: implications in the anti-aging and metabolic effects of sirtuinsProteomics. (2009)
  92. ^ Mao J1, et al. aP2-Cre-mediated inactivation of acetyl-CoA carboxylase 1 causes growth retardation and reduced lipid accumulation in adipose tissuesProc Natl Acad Sci U S A. (2009)
  93. a b Fukuwatari T1, Wada H, Shibata K. Age-related alterations of B-group vitamin contents in urine, blood and liver from ratsJ Nutr Sci Vitaminol (Tokyo). (2008)
  94. ^ Mock DM1. Skin manifestations of biotin deficiencySemin Dermatol. (1991)
  95. a b Gschwandtner M1, et al. Histamine suppresses epidermal keratinocyte differentiation and impairs skin barrier function in a human skin modelAllergy. (2013)
  96. ^ Ogawa Y1, et al. Prospective study of biotin treatment in patients with erythema due to gefitinib or erlotinibGan To Kagaku Ryoho. (2014)
  97. ^ Zempleni J1, Hassan YI, Wijeratne SS. Biotin and biotinidase deficiencyExpert Rev Endocrinol Metab. (2008)
  98. a b Korkmazer N1, et al. Serum and liver tissue biotinidase enzyme activity in rats which were administrated to valproic acidBrain Dev. (2006)
  99. a b Arslan M1, et al. The effects of biotin supplementation on serum and liver tissue biotinidase enzyme activity and alopecia in rats which were administrated to valproic acidBrain Dev. (2009)
  100. a b c Schulpis KH1, et al. Low serum biotinidase activity in children with valproic acid monotherapyEpilepsia. (2001)
  101. a b Luís PB1, et al. Inhibition of 3-methylcrotonyl-CoA carboxylase explains the increased excretion of 3-hydroxyisovaleric acid in valproate-treated patientsJ Inherit Metab Dis. (2012)
  102. ^ Comben N, Clark RJ, Sutherland DJ. Clinical observations on the response of equine hoof defects to dietary supplementation with biotinVet Rec. (1984)
  103. ^ CUNHA TJ, LINDLEY DC, ENSMINGER ME. Biotin deficiency syndrome in pigs fed desicated egg whiteJ Anim Sci. (1946)
  104. a b c Colombo VE, et al. Treatment of brittle fingernails and onychoschizia with biotin: scanning electron microscopyJ Am Acad Dermatol. (1990)
  105. ^ Hale G, Wallis NG, Perham RN. Interaction of avidin with the lipoyl domains in the pyruvate dehydrogenase multienzyme complex: three-dimensional location and similarity to biotinyl domains in carboxylasesProc Biol Sci. (1992)
  106. a b c Zempleni J, Trusty TA, Mock DM. Lipoic acid reduces the activities of biotin-dependent carboxylases in rat liverJ Nutr. (1997)
  107. a b c Said HM1, et al. Chronic ethanol feeding and acute ethanol exposure in vitro: effect on intestinal transport of biotinAm J Clin Nutr. (1990)