1. a b Figueroa A, et al. Watermelon extract supplementation reduces ankle blood pressure and carotid augmentation index in obese adults with prehypertension or hypertensionAm J Hypertens. (2012)
  2. a b Corpas E, et al. Oral arginine-lysine does not increase growth hormone or insulin-like growth factor-I in old menJ Gerontol. (1993)
  3. a b Buford BN, Koch AJ. Glycine-arginine-alpha-ketoisocaproic acid improves performance of repeated cycling sprintsMed Sci Sports Exerc. (2004)
  4. a b Stevens BR, et al. High-intensity dynamic human muscle performance enhanced by a metabolic interventionMed Sci Sports Exerc. (2000)
  5. ^ Wu G, Morris SM Jr. Arginine metabolism: nitric oxide and beyondBiochem J. (1998)
  6. ^ Arginine metabolism in mammals.
  7. ^ Malinauskas BM, et al. Supplements of interest for sport-related injury and sources of supplement information among college athletesAdv Med Sci. (2007)
  8. ^ Tharakan JF, et al. Adaptation to a long term (4 weeks) arginine- and precursor (glutamate, proline and aspartate)-free dietClin Nutr. (2008)
  9. a b c de Jonge WJ, et al. Overexpression of arginase I in enterocytes of transgenic mice elicits a selective arginine deficiency and affects skin, muscle, and lymphoid developmentAm J Clin Nutr. (2002)
  10. ^ de Jonge WJ, et al. Arginine deficiency affects early B cell maturation and lymphoid organ development in transgenic miceJ Clin Invest. (2002)
  11. ^ de Jonge WJ, et al. Overexpression of arginase alters circulating and tissue amino acids and guanidino compounds and affects neuromotor behavior in miceJ Nutr. (2001)
  12. ^ Kwikkers KL, et al. Effect of arginine deficiency on arginine-dependent post-translational protein modifications in miceBr J Nutr. (2005)
  13. a b Morris CR, et al. Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell diseaseJAMA. (2005)
  14. a b Diabetes-induced Coronary Vascular Dysfunction Involves Increased Arginase Activity.
  15. ^ Schramm L, et al. L-arginine deficiency and supplementation in experimental acute renal failure and in human kidney transplantationKidney Int. (2002)
  16. a b Adverse Gastrointestinal Effects of Arginine and Related Amino Acids.
  17. ^ Morris SM Jr. Recent advances in arginine metabolismCurr Opin Clin Nutr Metab Care. (2004)
  18. ^ De Bandt JP, et al. Metabolism of ornithine, alpha-ketoglutarate and arginine in isolated perfused rat liverBr J Nutr. (1995)
  19. ^ Curis E, et al. Almost all about citrulline in mammalsAmino Acids. (2005)
  20. ^ Plasma arginine and citrulline kinetics in adults given adequate and arginine-free diets.
  21. a b c Häberle J, et al. Suggested guidelines for the diagnosis and management of urea cycle disordersOrphanet J Rare Dis. (2012)
  22. ^ Bommarius AS, Makryaleas K, Drauz K. An enzymatic route to L-ornithine from L-arginine–activation and stabilization studies on L-arginaseBiomed Biochim Acta. (1991)
  23. ^ Bommarius AS, Drauz K. An enzymatic route to L-ornithine from arginine–activation, selectivity and stabilization of L-arginaseBioorg Med Chem. (1994)
  24. a b Targeted cellular metabolism for cancer chemotherapy with recombinant arginine-degrading enzymes.
  25. ^ Dai Z, et al. Nitric oxide and energy metabolism in mammalsBiofactors. (2013)
  26. a b Molderings GJ, Haenisch B. Agmatine (decarboxylated L-arginine): physiological role and therapeutic potentialPharmacol Ther. (2012)
  27. ^ Regunathan S, Reis DJ. Characterization of arginine decarboxylase in rat brain and liver: distinction from ornithine decarboxylaseJ Neurochem. (2000)
  28. ^ Raasch W, et al. Agmatine, the bacterial amine, is widely distributed in mammalian tissuesLife Sci. (1995)
  29. ^ Raasch W, et al. Agmatine is widely and unequally distributed in rat organsAnn N Y Acad Sci. (1995)
  30. ^ Li G, et al. Agmatine: an endogenous clonidine-displacing substance in the brainScience. (1994)
  31. a b c d e f g Bode-Böger SM, et al. L-arginine-induced vasodilation in healthy humans: pharmacokinetic-pharmacodynamic relationshipBr J Clin Pharmacol. (1998)
  32. a b c d Tangphao O, et al. Pharmacokinetics of intravenous and oral L-arginine in normal volunteersBr J Clin Pharmacol. (1999)
  33. ^ White MF, Christensen HN. The two-way flux of cationic amino acids across the plasma membrane of mammalian cells is largely explained by a single transport systemJ Biol Chem. (1982)
  34. ^ White MF, Gazzola GC, Christensen HN. Cationic amino acid transport into cultured animal cells. I. Influx into cultured human fibroblastsJ Biol Chem. (1982)
  35. ^ MacLeod CL. Regulation of cationic amino acid transporter (CAT) gene expressionBiochem Soc Trans. (1996)
  36. ^ MacLeod CL, Finley KD, Kakuda DK. y(+)-type cationic amino acid transport: expression and regulation of the mCAT genesJ Exp Biol. (1994)
  37. ^ Identification and Characterization of a Membrane Protein (y+L Amino Acid Transporter-1) That Associates with 4F2hc to Encode the Amino Acid Transport Activity y+L A CANDIDATE GENE FOR LYSINURIC PROTEIN INTOLERANCE.
  38. ^ Verrey F, et al. New glycoprotein-associated amino acid transportersJ Membr Biol. (1999)
  39. a b c Dall’Asta V, et al. Arginine transport through system y(+)L in cultured human fibroblasts: normal phenotype of cells from LPI subjectsAm J Physiol Cell Physiol. (2000)
  40. a b c d e Collier SR, Casey DP, Kanaley JA. Growth hormone responses to varying doses of oral arginineGrowth Horm IGF Res. (2005)
  41. a b Jabecka A, et al. Oral L-arginine supplementation in patients with mild arterial hypertension and its effect on plasma level of asymmetric dimethylarginine, L-citruline, L-arginine and antioxidant statusEur Rev Med Pharmacol Sci. (2012)
  42. a b c d e Wilson AM, et al. L-arginine supplementation in peripheral arterial disease: no benefit and possible harmCirculation. (2007)
  43. a b Teerlink T. Letter by Teerlink regarding article, “L-arginine supplementation in peripheral arterial disease: no benefit and possible harm”Circulation. (2008)
  44. ^ Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampusNature. (1993)
  45. ^ Hawkins RD, Kandel ER, Siegelbaum SA. Learning to modulate transmitter release: themes and variations in synaptic plasticityAnnu Rev Neurosci. (1993)
  46. a b Huang EP. Synaptic plasticity: a role for nitric oxide in LTPCurr Biol. (1997)
  47. a b Schuman EM, Madison DV. A requirement for the intercellular messenger nitric oxide in long-term potentiationScience. (1991)
  48. ^ Arancio O, et al. Nitric oxide acts directly in the presynaptic neuron to produce long-term potentiation in cultured hippocampal neuronsCell. (1996)
  49. ^ Bartus K, Pigott B, Garthwaite J. Cellular targets of nitric oxide in the hippocampusPLoS One. (2013)
  50. a b O’Dell TJ, et al. Endothelial NOS and the blockade of LTP by NOS inhibitors in mice lacking neuronal NOSScience. (1994)
  51. ^ Endothelial nitric oxide synthase localized to hippocampal pyramidal cells: implications for synaptic plasticity.
  52. a b c Son H, et al. Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthaseCell. (1996)
  53. ^ Sakoda T, et al. Myristoylation of endothelial cell nitric oxide synthase is important for extracellular release of nitric oxideMol Cell Biochem. (1995)
  54. ^ Kantor DB, et al. A role for endothelial NO synthase in LTP revealed by adenovirus-mediated inhibition and rescueScience. (1996)
  55. ^ Lameu C, de Camargo AC, Faria M. L-arginine signalling potential in the brain: the peripheral gets centralRecent Pat CNS Drug Discov. (2009)
  56. ^ Flam BR, Eichler DC, Solomonson LP. Endothelial nitric oxide production is tightly coupled to the citrulline-NO cycleNitric Oxide. (2007)
  57. ^ Xie L, Gross SS. Argininosuccinate synthetase overexpression in vascular smooth muscle cells potentiates immunostimulant-induced NO productionJ Biol Chem. (1997)
  58. ^ Husson A, et al. Argininosuccinate synthetase from the urea cycle to the citrulline-NO cycleEur J Biochem. (2003)
  59. ^ Matarredona ER, et al. Nitric oxide synthesis inhibition increases proliferation of neural precursors isolated from the postnatal mouse subventricular zoneBrain Res. (2004)
  60. ^ Stoop R, Poo MM. Synaptic modulation by neurotrophic factorsProg Brain Res. (1996)
  61. ^ Lo DC. Neurotrophic factors and synaptic plasticityNeuron. (1995)
  62. ^ Hsieh HY, et al. Nitric oxide regulates BDNF release from nodose ganglion neurons in a pattern-dependent and cGMP-independent mannerJ Neurosci Res. (2010)
  63. ^ Lameu C, et al. Interactions between the NO-citrulline cycle and brain-derived neurotrophic factor in differentiation of neural stem cellsJ Biol Chem. (2012)
  64. ^ Kirschbaum C, Pirke KM, Hellhammer DH. The ‘Trier Social Stress Test’–a tool for investigating psychobiological stress responses in a laboratory settingNeuropsychobiology. (1993)
  65. a b Jezova D, et al. Subchronic treatment with amino acid mixture of L-lysine and L-arginine modifies neuroendocrine activation during psychosocial stress in subjects with high trait anxietyNutr Neurosci. (2005)
  66. ^ Jezova D, et al. High trait anxiety in healthy subjects is associated with low neuroendocrine activity during psychosocial stressProg Neuropsychopharmacol Biol Psychiatry. (2004)
  67. ^ Smriga M, et al. Oral treatment with L-lysine and L-arginine reduces anxiety and basal cortisol levels in healthy humansBiomed Res. (2007)
  68. ^ Dietary L-Lysine Deficiency Increases Stress-Induced Anxiety and Fecal Excretion in Rats.
  69. ^ Lysine fortification reduces anxiety and lessens stress in family members in economically weak communities in northwest Syria.
  70. ^ Chang YF, Gao XM. L-lysine is a barbiturate-like anticonvulsant and modulator of the benzodiazepine receptorNeurochem Res. (1995)
  71. ^ Hasler WL. Lysine as a serotonin receptor antagonist: using the diet to modulate gut functionGastroenterology. (2004)
  72. ^ Smriga M, Torii K. L-Lysine acts like a partial serotonin receptor 4 antagonist and inhibits serotonin-mediated intestinal pathologies and anxiety in ratsProc Natl Acad Sci U S A. (2003)
  73. ^ Smriga M, Torii K. Prolonged treatment with L-lysine and L-arginine reduces stress-induced anxiety in an elevated plus mazeNutr Neurosci. (2003)
  74. ^ Joung HY, et al. The differential role of NOS inhibitors on stress-induced anxiety and neuroendocrine alterations in the ratBehav Brain Res. (2012)
  75. ^ Malinski T. Nitric oxide and nitroxidative stress in Alzheimer’s diseaseJ Alzheimers Dis. (2007)
  76. ^ McCann SM, et al. The nitric oxide theory of aging revisitedAnn N Y Acad Sci. (2005)
  77. a b Calabrese V, et al. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicityNat Rev Neurosci. (2007)
  78. ^ Rushaidhi M, et al. Aging affects L-arginine and its metabolites in memory-associated brain structures at the tissue and synaptoneurosome levelsNeuroscience. (2012)
  79. ^ Liu P, Jing Y, Zhang H. Age-related changes in arginine and its metabolites in memory-associated brain structuresNeuroscience. (2009)
  80. ^ Neural plasticity in the ageing brain.
  81. ^ Greenwood PM. Functional plasticity in cognitive aging: review and hypothesisNeuropsychology. (2007)
  82. a b Stuehr DJ. Structure-function aspects in the nitric oxide synthasesAnnu Rev Pharmacol Toxicol. (1997)
  83. ^ Charles IG, et al. Expression of human nitric oxide synthase isozymesMethods Enzymol. (1996)
  84. ^ Casas JP, et al. Endothelial nitric oxide synthase gene polymorphisms and cardiovascular disease: a HuGE reviewAm J Epidemiol. (2006)
  85. ^ Griffith OW, Stuehr DJ. Nitric oxide synthases: properties and catalytic mechanismAnnu Rev Physiol. (1995)
  86. ^ Marletta MA. Nitric oxide synthase structure and mechanismJ Biol Chem. (1993)
  87. ^ Masters BS. Nitric oxide synthases: why so complexAnnu Rev Nutr. (1994)
  88. ^ Mayer B, et al. Brain nitric oxide synthase is a biopterin- and flavin-containing multi-functional oxido-reductaseFEBS Lett. (1991)
  89. ^ Hevel JM, White KA, Marletta MA. Purification of the inducible murine macrophage nitric oxide synthase. Identification as a flavoproteinJ Biol Chem. (1991)
  90. ^ Stuehr DJ, et al. Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoproteinProc Natl Acad Sci U S A. (1991)
  91. ^ Mayer B, Hemmens B. Biosynthesis and action of nitric oxide in mammalian cellsTrends Biochem Sci. (1997)
  92. ^ Ghosh DK, Abu-Soud HM, Stuehr DJ. Reconstitution of the second step in NO synthesis using the isolated oxygenase and reductase domains of macrophage NO synthaseBiochemistry. (1995)
  93. ^ Lekakis JP, et al. Oral L-arginine improves endothelial dysfunction in patients with essential hypertensionInt J Cardiol. (2002)
  94. ^ L-Arginine and Atherothrombosis.
  95. a b Lucotti P, et al. Beneficial effects of a long-term oral L-arginine treatment added to a hypocaloric diet and exercise training program in obese, insulin-resistant type 2 diabetic patientsAm J Physiol Endocrinol Metab. (2006)
  96. a b c d e f Acute L-arginine supplementation reduces the O2 cost of moderate-intensity exercise and enhances high-intensity exercise tolerance.
  97. a b Fahs CA, Heffernan KS, Fernhall B. Hemodynamic and vascular response to resistance exercise with L-arginineMed Sci Sports Exerc. (2009)
  98. a b c Tang JE, et al. Bolus arginine supplementation affects neither muscle blood flow nor muscle protein synthesis in young men at rest or after resistance exerciseJ Nutr. (2011)
  99. a b c Alvares TS, et al. Acute l-arginine supplementation increases muscle blood volume but not strength performanceAppl Physiol Nutr Metab. (2012)
  100. ^ Durante W, Johnson FK, Johnson RA. Arginase: a critical regulator of nitric oxide synthesis and vascular functionClin Exp Pharmacol Physiol. (2007)
  101. ^ Baydoun AR, et al. Substrate-dependent regulation of intracellular amino acid concentrations in cultured bovine aortic endothelial cellsBiochem Biophys Res Commun. (1990)
  102. ^ Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginineNature. (1988)
  103. ^ Cardounel AJ, et al. Evidence for the pathophysiological role of endogenous methylarginines in regulation of endothelial NO production and vascular functionJ Biol Chem. (2007)
  104. a b Hardy TA, May JM. Coordinate regulation of L-arginine uptake and nitric oxide synthase activity in cultured endothelial cellsFree Radic Biol Med. (2002)
  105. a b Bode-Böger SM, Scalera F, Ignarro LJ. The L-arginine paradox: Importance of the L-arginine/asymmetrical dimethylarginine ratioPharmacol Ther. (2007)
  106. a b Shin S, Mohan S, Fung HL. Intracellular L-arginine concentration does not determine NO production in endothelial cells: implications on the “L-arginine paradox”Biochem Biophys Res Commun. (2011)
  107. a b c Liu TH, et al. No effect of short-term arginine supplementation on nitric oxide production, metabolism and performance in intermittent exercise in athletesJ Nutr Biochem. (2009)
  108. ^ Tsukahara H, Gordienko DV, Goligorsky MS. Continuous monitoring of nitric oxide release from human umbilical vein endothelial cellsBiochem Biophys Res Commun. (1993)
  109. a b Joshi MS, et al. Receptor-mediated activation of nitric oxide synthesis by arginine in endothelial cellsProc Natl Acad Sci U S A. (2007)
  110. a b McDonald KK, et al. A caveolar complex between the cationic amino acid transporter 1 and endothelial nitric-oxide synthase may explain the “arginine paradox”J Biol Chem. (1997)
  111. ^ Zani BG, Bohlen HG. Transport of extracellular l-arginine via cationic amino acid transporter is required during in vivo endothelial nitric oxide productionAm J Physiol Heart Circ Physiol. (2005)
  112. ^ Kone BC. Protein-protein interactions controlling nitric oxide synthasesActa Physiol Scand. (2000)
  113. a b Vallance P, et al. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failureLancet. (1992)
  114. a b Böger RH, et al. Restoring vascular nitric oxide formation by L-arginine improves the symptoms of intermittent claudication in patients with peripheral arterial occlusive diseaseJ Am Coll Cardiol. (1998)
  115. a b Mittermayer F, et al. Asymmetric dimethylarginine predicts major adverse cardiovascular events in patients with advanced peripheral artery diseaseArterioscler Thromb Vasc Biol. (2006)
  116. ^ ADMA, Endothelial Progenitor Cells, and Cardiovascular Risk.
  117. ^ Effects of asymmetric dimethylarginine (ADMA) infusion in humans.
  118. ^ Kielstein JT, et al. Cardiovascular effects of systemic nitric oxide synthase inhibition with asymmetrical dimethylarginine in humansCirculation. (2004)
  119. a b Cooke JP. Asymmetrical dimethylarginine: the Uber markerCirculation. (2004)
  120. ^ Leiper JM, et al. Identification of two human dimethylarginine dimethylaminohydrolases with distinct tissue distributions and homology with microbial arginine deiminasesBiochem J. (1999)
  121. ^ Jacobi J, et al. Overexpression of dimethylarginine dimethylaminohydrolase reduces tissue asymmetric dimethylarginine levels and enhances angiogenesisCirculation. (2005)
  122. ^ Stühlinger MC, et al. Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginineCirculation. (2001)
  123. ^ Drexler H, et al. Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by L-arginineLancet. (1991)
  124. ^ Ito A, et al. Novel mechanism for endothelial dysfunction: dysregulation of dimethylarginine dimethylaminohydrolaseCirculation. (1999)
  125. ^ Lin KY, et al. Impaired nitric oxide synthase pathway in diabetes mellitus: role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolaseCirculation. (2002)
  126. ^ Willoughby DS, et al. Effects of 7 days of arginine-alpha-ketoglutarate supplementation on blood flow, plasma L-arginine, nitric oxide metabolites, and asymmetric dimethyl arginine after resistance exerciseInt J Sport Nutr Exerc Metab. (2011)
  127. a b c d Schwedhelm E, et al. Pharmacokinetic and pharmacodynamic properties of oral L-citrulline and L-arginine: impact on nitric oxide metabolismBr J Clin Pharmacol. (2008)
  128. ^ Ochiai M, et al. Short-term effects of L-citrulline supplementation on arterial stiffness in middle-aged menInt J Cardiol. (2012)
  129. ^ Bode-Böger SM, et al. L-arginine induces nitric oxide-dependent vasodilation in patients with critical limb ischemia. A randomized, controlled studyCirculation. (1996)
  130. ^ Sydow K, et al. Central role of mitochondrial aldehyde dehydrogenase and reactive oxygen species in nitroglycerin tolerance and cross-toleranceJ Clin Invest. (2004)
  131. ^ Witte DR, et al. Measurement of flow-mediated dilatation of the brachial artery is affected by local elastic vessel wall properties in high-risk patientsAtherosclerosis. (2005)
  132. ^ Lind L. Arterial compliance influences the measurement of flow-mediated vasodilation, but not acetylcholine-mediated forearm blood flow. The Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) studyAtherosclerosis. (2007)
  133. a b Vasilijevic A, et al. Beneficial effects of L-arginine nitric oxide-producing pathway in rats treated with alloxanJ Physiol. (2007)
  134. ^ Méndez JD, Hernández Rde H. L-arginine and polyamine administration protect beta-cells against alloxan diabetogenic effect in Sprague-Dawley ratsBiomed Pharmacother. (2005)
  135. a b Mohan IK, Das UN. Effect of L-arginine-nitric oxide system on chemical-induced diabetes mellitusFree Radic Biol Med. (1998)
  136. ^ Lindsay RM, et al. N omega-nitro-L-arginine methyl ester reduces the incidence of IDDM in BB/E ratsDiabetes. (1995)
  137. ^ Kaneto H, et al. Apoptotic cell death triggered by nitric oxide in pancreatic beta-cellsDiabetes. (1995)
  138. ^ DiMagno MJ, et al. Secretagogue-stimulated pancreatic secretion is differentially regulated by constitutive NOS isoforms in miceAm J Physiol Gastrointest Liver Physiol. (2004)
  139. a b c Monti LD, et al. Effect of a long-term oral l-arginine supplementation on glucose metabolism: a randomized, double-blind, placebo-controlled trialDiabetes Obes Metab. (2012)
  140. ^ Tang WH, et al. Diminished global arginine bioavailability and increased arginine catabolism as metabolic profile of increased cardiovascular riskJ Am Coll Cardiol. (2009)
  141. ^ Sourij H, et al. Arginine bioavailability ratios are associated with cardiovascular mortality in patients referred to coronary angiographyAtherosclerosis. (2011)
  142. ^ Jabłecka A, et al. The effect of oral L-arginine supplementation on fasting glucose, HbA1c, nitric oxide and total antioxidant status in diabetic patients with atherosclerotic peripheral arterial disease of lower extremitiesEur Rev Med Pharmacol Sci. (2012)
  143. a b Álvares TS, et al. L-Arginine as a potential ergogenic aid in healthy subjectsSports Med. (2011)
  144. ^ Long JH, et al. Arginine supplementation induces myoblast fusion via augmentation of nitric oxide productionJ Muscle Res Cell Motil. (2006)
  145. ^ Maxwell AJ, et al. L-arginine enhances aerobic exercise capacity in association with augmented nitric oxide productionJ Appl Physiol. (2001)
  146. ^ Schaefer A, et al. L-arginine reduces exercise-induced increase in plasma lactate and ammoniaInt J Sports Med. (2002)
  147. ^ Wax B, et al. Acute L-arginine alpha ketoglutarate supplementation fails to improve muscular performance in resistance trained and untrained menJ Int Soc Sports Nutr. (2012)
  148. ^ Abel T, et al. Influence of chronic supplementation of arginine aspartate in endurance athletes on performance and substrate metabolism – a randomized, double-blind, placebo-controlled studyInt J Sports Med. (2005)
  149. ^ Colombani PC, et al. Chronic arginine aspartate supplementation in runners reduces total plasma amino acid level at rest and during a marathon runEur J Nutr. (1999)
  150. ^ McConell GK. Effects of L-arginine supplementation on exercise metabolismCurr Opin Clin Nutr Metab Care. (2007)
  151. ^ McKnight JR, et al. Beneficial effects of L-arginine on reducing obesity: potential mechanisms and important implications for human healthAmino Acids. (2010)
  152. a b c d e Zajac A, et al. Arginine and ornithine supplementation increases growth hormone and insulin-like growth factor-1 serum levels after heavy-resistance exercise in strength-trained athletesJ Strength Cond Res. (2010)
  153. a b c d Kanaley JA. Growth hormone, arginine and exerciseCurr Opin Clin Nutr Metab Care. (2008)
  154. ^ Oral arginine attenuates the growth hormone response to resistance exercise.
  155. a b Marcell TJ, et al. Oral arginine does not stimulate basal or augment exercise-induced GH secretion in either young or old adultsJ Gerontol A Biol Sci Med Sci. (1999)
  156. a b Borst SE, Millard WJ, Lowenthal DT. Growth hormone, exercise, and aging: the future of therapy for the frail elderlyJ Am Geriatr Soc. (1994)
  157. a b Fogelholm GM, et al. Low-dose amino acid supplementation: no effects on serum human growth hormone and insulin in male weightliftersInt J Sport Nutr. (1993)
  158. ^ Veldhuis JD, Bowers CY. Regulated recovery of pulsatile growth hormone secretion from negative feedback: a preclinical investigationAm J Physiol Regul Integr Comp Physiol. (2011)
  159. ^ Veldhuis JD, et al. Neurophysiological regulation and target-tissue impact of the pulsatile mode of growth hormone secretion in the humanGrowth Horm IGF Res. (2001)
  160. ^ Besset A, et al. Increase in sleep related GH and Prl secretion after chronic arginine aspartate administration in manActa Endocrinol (Copenh). (1982)
  161. ^ Barbul A, et al. Arginine enhances wound healing and lymphocyte immune responses in humansSurgery. (1990)
  162. ^ Shi HP, et al. Supplemental L-arginine enhances wound healing in diabetic ratsWound Repair Regen. (2003)
  163. ^ Debats IB, et al. Role of arginine in superficial wound healing in manNitric Oxide. (2009)
  164. ^ Shi HP, et al. Supplemental dietary arginine enhances wound healing in normal but not inducible nitric oxide synthase knockout miceSurgery. (2000)
  165. ^ Shi HP, et al. Effect of supplemental ornithine on wound healingJ Surg Res. (2002)
  166. ^ Campbell B, et al. Pharmacokinetics, safety, and effects on exercise performance of L-arginine alpha-ketoglutarate in trained adult menNutrition. (2006)
  167. ^ Cynober L, et al. Action of ornithine alpha-ketoglutarate, ornithine hydrochloride, and calcium alpha-ketoglutarate on plasma amino acid and hormonal patterns in healthy subjectsJ Am Coll Nutr. (1990)
  168. a b c Moinard C, et al. Dose-ranging effects of citrulline administration on plasma amino acids and hormonal patterns in healthy subjects: the Citrudose pharmacokinetic studyBr J Nutr. (2008)
  169. ^ Rougé C, et al. Manipulation of citrulline availability in humansAm J Physiol Gastrointest Liver Physiol. (2007)
  170. ^ Thibault R, et al. Oral citrulline does not affect whole body protein metabolism in healthy human volunteers: results of a prospective, randomized, double-blind, cross-over studyClin Nutr. (2011)
  171. ^ Sureda A, et al. L-citrulline-malate influence over branched chain amino acid utilization during exerciseEur J Appl Physiol. (2010)
  172. ^ Isidori A, Lo Monaco A, Cappa M. A study of growth hormone release in man after oral administration of amino acidsCurr Med Res Opin. (1981)
  173. ^ Shao A, Hathcock JN. Risk assessment for the amino acids taurine, L-glutamine and L-arginineRegul Toxicol Pharmacol. (2008)
  174. ^ Hellier MD, Holdsworth CD, Perrett D. Dibasic amino acid absorption in manGastroenterology. (1973)
  175. ^ Izzo AA, Mascolo N, Capasso F. Nitric oxide as a modulator of intestinal water and electrolyte transportDig Dis Sci. (1998)