1. ^ Naila A, et al. Control of biogenic amines in food–existing and emerging approachesJ Food Sci. (2010)
  2. a b c Molderings GJ, Haenisch B. Agmatine (decarboxylated L-arginine): physiological role and therapeutic potentialPharmacol Ther. (2012)
  3. a b Holt A, Baker GB. Metabolism of agmatine (clonidine-displacing substance) by diamine oxidase and the possible implications for studies of imidazoline receptorsProg Brain Res. (1995)
  4. ^ Galgano F, et al. Focused review: agmatine in fermented foodsFront Microbiol. (2012)
  5. ^ Authentication of Italian red wines on the basis of the polyphenols and biogenic amines.
  6. ^ HPLC determination of agmatine and other amines in wine.
  7. ^ De Borba BM, Rohrer JS. Determination of biogenic amines in alcoholic beverages by ion chromatography with suppressed conductivity detection and integrated pulsed amperometric detectionJ Chromatogr A. (2007)
  8. ^ The biogenic amine content of beer; the effect of barley, malting and brewing on amine concentration.
  9. ^ Kvasnicka F, Voldrich M. Determination of biogenic amines by capillary zone electrophoresis with conductometric detectionJ Chromatogr A. (2006)
  10. ^ Okamoto A, et al. Polyamine content of ordinary foodstuffs and various fermented foodsBiosci Biotechnol Biochem. (1997)
  11. ^ Profile and levels of bioactive amines in instant coffee.
  12. ^ Ruiz-Capillas C, Jiménez-Colmenero F. Biogenic amines in meat and meat productsCrit Rev Food Sci Nutr. (2004)
  13. ^ Lorenzo JM, et al. Biogenic amine content during the manufacture of dry-cured lacón, a Spanish traditional meat product: Effect of some additivesMeat Sci. (2007)
  14. ^ Bover-Cid S, Izquierdo-Pulido M, Carmen Vidal-Carou M. Changes in biogenic amine and polyamine contents in slightly fermented sausages manufactured with and without sugarMeat Sci. (2001)
  15. ^ Consequences of high-pressure processing of vacuum-packaged frankfurters on the formation of polyamines: Effect of chilled storage.
  16. ^ Biogenic amine changes in barramundi (Lates calcarifer) slices stored at 0 °C and 4 °C.
  17. ^ Ruiz-Capillas C, Moral A. Free amino acids and biogenic amines in red and white muscle of tuna stored in controlled atmospheresAmino Acids. (2004)
  18. ^ Quality changes of anchovy (Stolephorus heterolobus) under refrigerated storage of different practical industrial methods in Thailand.
  19. ^ Profile and levels of bioactive amines in green and roasted coffee.
  20. ^ Monitoring of biologically active amines in cereals and cereal based food products by HPLC.
  21. ^ Kirschbaum J, Rebscher K, Brückner H. Liquid chromatographic determination of biogenic amines in fermented foods after derivatization with 3,5-dinitrobenzoyl chlorideJ Chromatogr A. (2000)
  22. ^ Gründemann D, et al. Agmatine is efficiently transported by non-neuronal monoamine transporters extraneuronal monoamine transporter (EMT) and organic cation transporter 2 (OCT2)J Pharmacol Exp Ther. (2003)
  23. a b c Steer H. The source of carbon dioxide for gastric acid productionAnat Rec (Hoboken). (2009)
  24. a b Jones TZ, et al. Interactions of imidazoline ligands with the active site of purified monoamine oxidase AFEBS J. (2007)
  25. a b Remko M, Swart M, Bickelhaupt FM. Theoretical study of structure, pKa, lipophilicity, solubility, absorption, and polar surface area of some centrally acting antihypertensivesBioorg Med Chem. (2006)
  26. ^ Zhu MY, et al. Expression of human arginine decarboxylase, the biosynthetic enzyme for agmatineBiochim Biophys Acta. (2004)
  27. a b c d Raasch W, et al. Agmatine is widely and unequally distributed in rat organsAnn N Y Acad Sci. (1995)
  28. a b c d e Raasch W, et al. Agmatine, the bacterial amine, is widely distributed in mammalian tissuesLife Sci. (1995)
  29. ^ Iyer RK, et al. Cloning and characterization of human agmatinaseMol Genet Metab. (2002)
  30. ^ Mistry SK, et al. Cloning of human agmatinase. An alternate path for polyamine synthesis induced in liver by hepatitis B virusAm J Physiol Gastrointest Liver Physiol. (2002)
  31. ^ Haenisch B, et al. Regulatory mechanisms underlying agmatine homeostasis in humansAm J Physiol Gastrointest Liver Physiol. (2008)
  32. ^ Dallmann K, et al. Human agmatinase is diminished in the clear cell type of renal cell carcinomaInt J Cancer. (2004)
  33. a b c Bernstein HG, et al. Agmatinase, an inactivator of the putative endogenous antidepressant agmatine, is strongly upregulated in hippocampal interneurons of subjects with mood disordersNeuropharmacology. (2012)
  34. a b Sastre M, et al. Metabolism of agmatine in macrophages: modulation by lipopolysaccharide and inhibitory cytokinesBiochem J. (1998)
  35. ^ Haenisch B, et al. Effects of exogenous agmatine in human leukemia HMC-1 and HL-60 cells on proliferation, polyamine metabolism and cell cycleLeuk Res. (2011)
  36. ^ Regunathan S, et al. Imidazoline receptors and agmatine in blood vessels: a novel system inhibiting vascular smooth muscle proliferationJ Pharmacol Exp Ther. (1996)
  37. ^ Gorbatyuk OS, et al. Localization of agmatine in vasopressin and oxytocin neurons of the rat hypothalamic paraventricular and supraoptic nucleiExp Neurol. (2001)
  38. a b c Reis DJ, Yang XC, Milner TA. Agmatine containing axon terminals in rat hippocampus form synapses on pyramidal cellsNeurosci Lett. (1998)
  39. a b c d e f Otake K, et al. Regional localization of agmatine in the rat brain: an immunocytochemical studyBrain Res. (1998)
  40. ^ Imidazoline Receptors and Their Endogenous Ligands.
  41. ^ Wang H, et al. An antibody to agmatine localizes the amine in bovine adrenal chromaffin cellsNeurosci Lett. (1995)
  42. a b Molderings GJ, et al. Gastrointestinal uptake of agmatine: distribution in tissues and organs and pathophysiologic relevanceAnn N Y Acad Sci. (2003)
  43. a b c Gilad GM, et al. Metabolism of agmatine into urea but not into nitric oxide in rat brainNeuroreport. (1996)
  44. a b Komori Y, Wallace GC, Fukuto JM. Inhibition of purified nitric oxide synthase from rat cerebellum and macrophage by L-arginine analogsArch Biochem Biophys. (1994)
  45. a b Yokoi I, et al. Structure-activity relationships of arginine analogues on nitric oxide synthase activity in the rat brainNeuropharmacology. (1994)
  46. a b Sennequier N, Stuehr DJ. Analysis of substrate-induced electronic, catalytic, and structural changes in inducible NO synthaseBiochemistry. (1996)
  47. a b c Novotny WF, et al. Diamine oxidase is the amiloride-binding protein and is inhibited by amiloride analoguesJ Biol Chem. (1994)
  48. ^ McGrath AP, et al. A new crystal form of human diamine oxidaseActa Crystallogr Sect F Struct Biol Cryst Commun. (2010)
  49. a b c d e f Cabella C, et al. Transport and metabolism of agmatine in rat hepatocyte culturesEur J Biochem. (2001)
  50. a b Mella C, et al. Expression and localization of an agmatinase-like protein in the rat brainHistochem Cell Biol. (2010)
  51. ^ Polo LM, et al. New insight into the transcarbamylase family: the structure of putrescine transcarbamylase, a key catalyst for fermentative utilization of agmatinePLoS One. (2012)
  52. a b Satriano J, et al. Agmatine suppresses proliferation by frameshift induction of antizyme and attenuation of cellular polyamine levelsJ Biol Chem. (1998)
  53. ^ Babál P, et al. Regulation of ornithine decarboxylase activity and polyamine transport by agmatine in rat pulmonary artery endothelial cellsJ Pharmacol Exp Ther. (2001)
  54. ^ Satriano J, Kelly CJ, Blantz RC. An emerging role for agmatineKidney Int. (1999)
  55. ^ Llácer JL, et al. The gene cluster for agmatine catabolism of Enterococcus faecalis: study of recombinant putrescine transcarbamylase and agmatine deiminase and a snapshot of agmatine deiminase catalyzing its reactionJ Bacteriol. (2007)
  56. ^ Wargnies B, Lauwers N, Stalon V. Structure and properties of the putrescine carbamoyltransferase of Streptococcus faecalisEur J Biochem. (1979)
  57. ^ Simon JP, Stalon V. Enzymes of agmatine degradation and the control of their synthesis in Streptococcus faecalisJ Bacteriol. (1982)
  58. ^ Biosynthesis and metabolism of arginine in bacteria.
  59. ^ Simon JP, Wargnies B, Stalon V. Control of enzyme synthesis in the arginine deiminase pathway of Streptococcus faecalisJ Bacteriol. (1982)
  60. ^ Xi H, Schneider BL, Reitzer L. Purine catabolism in Escherichia coli and function of xanthine dehydrogenase in purine salvageJ Bacteriol. (2000)
  61. ^ TIGIER H, GRISOLIA S. INDUCTION OF CARBAMYL-P SPECIFIC OXAMATE TRANSCARBAMYLASE BY PARABANIC ACID IN A STREPTOCOCCUSBiochem Biophys Res Commun. (1965)
  62. a b c d e f Aricioglu F, Regunathan S, Piletz JE. Is agmatine an endogenous factor against stressAnn N Y Acad Sci. (2003)
  63. a b c d Piletz JE, et al. Agmatine crosses the blood-brain barrierAnn N Y Acad Sci. (2003)
  64. a b c Feng Y, Halaris AE, Piletz JE. Determination of agmatine in brain and plasma using high-performance liquid chromatography with fluorescence detectionJ Chromatogr B Biomed Sci Appl. (1997)
  65. a b c Regunathan S, et al. Agmatine levels in the cerebrospinal fluid of normal human volunteersJ Pain Palliat Care Pharmacother. (2009)
  66. a b Jo I, et al. Low levels of plasma agmatine in the metabolic syndromeMetab Syndr Relat Disord. (2010)
  67. a b c d e f g h i j k l m Li G, et al. Agmatine: an endogenous clonidine-displacing substance in the brainScience. (1994)
  68. a b Uzbay T, et al. Increased plasma agmatine levels in patients with schizophreniaJ Psychiatr Res. (2013)
  69. a b c Halaris A, et al. Plasma agmatine and platelet imidazoline receptors in depressionAnn N Y Acad Sci. (1999)
  70. a b c d Molderings GJ, et al. Exposure of rat isolated stomach and rats in vivo to {(14)C}agmatine: accumulation in the stomach wall and distribution in various tissuesFundam Clin Pharmacol. (2002)
  71. a b c d e f g h i Li YF, et al. Antidepressant-like effect of agmatine and its possible mechanismEur J Pharmacol. (2003)
  72. a b c d Roberts JC, et al. Pharmacodynamic and pharmacokinetic studies of agmatine after spinal administration in the mouseJ Pharmacol Exp Ther. (2005)
  73. a b c Raasch W, et al. Agmatine, an endogenous ligand at imidazoline binding sites, does not antagonize the clonidine-mediated blood pressure reactionBr J Pharmacol. (2002)
  74. a b Satriano J, et al. Polyamine transport system mediates agmatine transport in mammalian cellsAm J Physiol Cell Physiol. (2001)
  75. a b Agmatine Is Efficiently Transported by Non-Neuronal Monoamine Transporters Extraneuronal Monoamine Transporter (EMT) and Organic Cation Transporter 2 (OCT2).
  76. ^ Agmatine Is Synthesized by a Mitochondrial Arginine Decarboxylase in Rat Brain.
  77. ^ Endogenous pain modulation: Neuropharmacokinetic/dynamic studies of the endogenous NMDA receptor antagonist/NOS inhibitor, agmatine.
  78. ^ Reis DJ, Regunathan S. Agmatine: a novel neurotransmitterAdv Pharmacol. (1998)
  79. ^ Sastre M, et al. Agmatinase activity in rat brain: a metabolic pathway for the degradation of agmatineJ Neurochem. (1996)
  80. a b c Goracke-Postle CJ, et al. Release of tritiated agmatine from spinal synaptosomesNeuroreport. (2006)
  81. ^ Sastre M, Regunathan S, Reis DJ. Uptake of agmatine into rat brain synaptosomes: possible role of cation channelsJ Neurochem. (1997)
  82. ^ Goracke-Postle CJ, et al. Potassium- and capsaicin-induced release of agmatine from spinal nerve terminalsJ Neurochem. (2007)
  83. a b Goracke-Postle CJ, et al. Agmatine transport into spinal nerve terminals is modulated by polyamine analogsJ Neurochem. (2007)
  84. ^ Regunathan S, et al. Agmatine (decarboxylated arginine) is synthesized and stored in astrocytesNeuroreport. (1995)
  85. a b Zomkowski AD, Santos AR, Rodrigues AL. Putrescine produces antidepressant-like effects in the forced swimming test and in the tail suspension test in miceProg Neuropsychopharmacol Biol Psychiatry. (2006)
  86. a b c d e Molderings GJ, et al. Dual interaction of agmatine with the rat alpha(2D)-adrenoceptor: competitive antagonism and allosteric activationBr J Pharmacol. (2000)
  87. a b c d e f g h Dias Elpo Zomkowski A, et al. Evidence for serotonin receptor subtypes involvement in agmatine antidepressant like-effect in the mouse forced swimming testBrain Res. (2004)
  88. a b c d Gibson DA, et al. Radioligand binding studies reveal agmatine is a more selective antagonist for a polyamine-site on the NMDA receptor than arcaine or ifenprodilBrain Res. (2002)
  89. ^ Lewin AH, et al. Molecular features associated with polyamine modulation of NMDA receptorsJ Med Chem. (1998)
  90. a b c d e f g h i j k Jiang XZ, et al. 5-HT1A/1B receptors, alpha2-adrenoceptors and the post-receptor adenylate cyclase activation in the mice brain are involved in the antidepressant-like action of agmatineYao Xue Xue Bao. (2008)
  91. a b Piletz JE, Chikkala DN, Ernsberger P. Comparison of the properties of agmatine and endogenous clonidine-displacing substance at imidazoline and alpha-2 adrenergic receptorsJ Pharmacol Exp Ther. (1995)
  92. a b c Morrissey JJ, Klahr S. Agmatine activation of nitric oxide synthase in endothelial cellsProc Assoc Am Physicians. (1997)
  93. a b c d e f Chang CH, et al. Increase of beta-endorphin secretion by agmatine is induced by activation of imidazoline I(2A) receptors in adrenal gland of ratsNeurosci Lett. (2010)
  94. a b Pinthong D, et al. Comparison of the interaction of agmatine and crude methanolic extracts of bovine lung and brain with alpha 2-adrenoceptor binding sitesBr J Pharmacol. (1995)
  95. a b c Pinthong D, et al. Agmatine recognizes alpha 2-adrenoceptor binding sites but neither activates nor inhibits alpha 2-adrenoceptorsNaunyn Schmiedebergs Arch Pharmacol. (1995)
  96. ^ Pinthong D, et al. No evidence for activation of alpha(2)-adrenoceptors by methanolic extracts of bovine brain and lung containing clonidine-displacing substanceAnn N Y Acad Sci. (2003)
  97. a b c d Taksande BG, et al. Agmatine in the hypothalamic paraventricular nucleus stimulates feeding in rats: involvement of neuropeptide YBr J Pharmacol. (2011)
  98. a b c d e f g h i j k l Zomkowski AD, et al. Agmatine produces antidepressant-like effects in two models of depression in miceNeuroreport. (2002)
  99. ^ Ozaita A, et al. Inhibition of monoamine oxidase A and B activities by imidazol(ine)/guanidine drugs, nature of the interaction and distinction from I2-imidazoline receptors in rat liverBr J Pharmacol. (1997)
  100. a b Raasch W, Muhle H, Dominiak P. Modulation of MAO activity by imidazoline and guanidine derivativesAnn N Y Acad Sci. (1999)
  101. ^ Regunathan S, Meeley MP, Reis DJ. Expression of non-adrenergic imidazoline sites in chromaffin cells and mitochondrial membranes of bovine adrenal medullaBiochem Pharmacol. (1993)
  102. ^ Head GA, Mayorov DN. Imidazoline receptors, novel agents and therapeutic potentialCardiovasc Hematol Agents Med Chem. (2006)
  103. a b c d e González C, et al. Agmatine, an endogenous modulator of noradrenergic neurotransmission in the rat tail arteryBr J Pharmacol. (1996)
  104. ^ Molderings GJ, Göthert M. Inhibitory presynaptic imidazoline receptors on sympathetic nerves in the rabbit aorta differ from I1- and I2-imidazoline binding sitesNaunyn Schmiedebergs Arch Pharmacol. (1995)
  105. a b c d Askalany AR, et al. Effect of agmatine on heteromeric N-methyl-D-aspartate receptor channelsNeurosci Res. (2005)
  106. a b c d e f Yang XC, Reis DJ. Agmatine selectively blocks the N-methyl-D-aspartate subclass of glutamate receptor channels in rat hippocampal neuronsJ Pharmacol Exp Ther. (1999)
  107. ^ Reynolds IJ. Arcaine uncovers dual interactions of polyamines with the N-methyl-D-aspartate receptorJ Pharmacol Exp Ther. (1990)
  108. ^ Anis N, et al. Structure-activity relationships of philanthotoxin analogs and polyamines on N-methyl-D-aspartate and nicotinic acetylcholine receptorsJ Pharmacol Exp Ther. (1990)
  109. a b c d e f g Zhu MY, et al. Effect of agmatine against cell death induced by NMDA and glutamate in neurons and PC12 cellsCell Mol Neurobiol. (2003)
  110. ^ Brown RE, Stevens DR, Haas HL. The physiology of brain histamineProg Neurobiol. (2001)
  111. a b Burban A, et al. Histamine potentiates N-methyl-D-aspartate receptors by interacting with an allosteric site distinct from the polyamine binding siteJ Pharmacol Exp Ther. (2010)
  112. ^ Watanabe C, et al. Intrathecal high-dose histamine induces spinally-mediated nociceptive behavioral responses through a polyamine site of NMDA receptorsEur J Pharmacol. (2008)
  113. a b c Wade CL, et al. Immunoneutralization of agmatine sensitizes mice to micro-opioid receptor toleranceJ Pharmacol Exp Ther. (2009)
  114. ^ Lewis B, Wellmann KA, Barron S. Agmatine reduces balance deficits in a rat model of third trimester binge-like ethanol exposurePharmacol Biochem Behav. (2007)
  115. ^ Barron S, et al. Polyamine modulation of NMDARs as a mechanism to reduce effects of alcohol dependenceRecent Pat CNS Drug Discov. (2012)
  116. a b Rawls SM, Gomez T, Raffa RB. An NMDA antagonist (LY 235959) attenuates abstinence-induced withdrawal of planarians following acute exposure to a cannabinoid agonist (WIN 55212-2)Pharmacol Biochem Behav. (2007)
  117. a b c d e f g h i Demady DR, et al. Agmatine enhances the NADPH oxidase activity of neuronal NO synthase and leads to oxidative inactivation of the enzymeMol Pharmacol. (2001)
  118. a b c Nishida CR, Ortiz de Montellano PR. Electron transfer and catalytic activity of nitric oxide synthases. Chimeric constructs of the neuronal, inducible, and endothelial isoformsJ Biol Chem. (1998)
  119. a b Abu-Soud HM, et al. Electron transfer in the nitric-oxide synthases. Characterization of L-arginine analogs that block heme iron reductionJ Biol Chem. (1994)
  120. ^ Alagarsamy S, Johnson KM. Voltage-dependent calcium channel involvement in NMDA-induced activation of NOSNeuroreport. (1995)
  121. a b Fairbanks CA, Wilcox GL. Acute tolerance to spinally administered morphine compares mechanistically with chronically induced morphine toleranceJ Pharmacol Exp Ther. (1997)
  122. ^ Kolesnikov YA, et al. Blockade of tolerance to morphine but not to kappa opioids by a nitric oxide synthase inhibitorProc Natl Acad Sci U S A. (1993)
  123. a b Elliott K, et al. The NMDA receptor antagonists, LY274614 and MK-801, and the nitric oxide synthase inhibitor, NG-nitro-L-arginine, attenuate analgesic tolerance to the mu-opioid morphine but not to kappa opioidsPain. (1994)
  124. a b Elliott K, et al. N-methyl-D-aspartate (NMDA) receptors, mu and kappa opioid tolerance, and perspectives on new analgesic drug developmentNeuropsychopharmacology. (1995)
  125. ^ Loring RH. Agmatine acts as an antagonist of neuronal nicotinic receptorsBr J Pharmacol. (1990)
  126. a b c d e f Krass M, et al. Antidepressant-like effect of agmatine is not mediated by serotoninBehav Brain Res. (2008)
  127. ^ Molderings GJ, et al. Inhibition of 5-HT3 receptor function by imidazolines in mouse neuroblastoma cells: potential involvement of sigma 2 binding sitesNaunyn Schmiedebergs Arch Pharmacol. (1996)
  128. a b c d e Taksande BG, et al. Antidepressant like effect of selective serotonin reuptake inhibitors involve modulation of imidazoline receptors by agmatineNeuropharmacology. (2009)
  129. ^ Kim HS, et al. NMDA receptor antagonists enhance 5-HT2 receptor-mediated behavior, head-twitch response, in PCPA-treated miceArch Pharm Res. (1999)
  130. ^ Kim HS, Son YR, Kim SH. Nitric oxide synthase inhibitors enhance 5-HT2 receptor-mediated behavior, the head-twitch response in miceLife Sci. (1999)
  131. a b Kotagale NR, et al. Evidences for the agmatine involvement in antidepressant like effect of bupropion in mouse forced swim testPharmacol Biochem Behav. (2013)
  132. a b Tsou K, et al. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous systemNeuroscience. (1998)
  133. a b Pettit DA, et al. Immunohistochemical localization of the neural cannabinoid receptor in rat brainJ Neurosci Res. (1998)
  134. a b Ruggiero DA, et al. Immunocytochemical localization of an imidazoline receptor protein in the central nervous systemBrain Res. (1998)
  135. a b Molderings GJ, Likungu J, Göthert M. Presynaptic cannabinoid and imidazoline receptors in the human heart and their potential relationshipNaunyn Schmiedebergs Arch Pharmacol. (1999)
  136. a b c d e f g Aggarwal S, et al. Agmatine enhances cannabinoid action in the hot-plate assay of thermal nociceptionPharmacol Biochem Behav. (2009)
  137. a b Rawls SM, Tallarida RJ, Zisk J. Agmatine and a cannabinoid agonist, WIN 55212-2, interact to produce a hypothermic synergyEur J Pharmacol. (2006)
  138. a b Compton DR, et al. Aminoalkylindole analogs: cannabimimetic activity of a class of compounds structurally distinct from delta 9-tetrahydrocannabinolJ Pharmacol Exp Ther. (1992)
  139. a b c Thorat SN, Bhargava HN. Effects of NMDA receptor blockade and nitric oxide synthase inhibition on the acute and chronic actions of delta 9-tetrahydrocannabinol in miceBrain Res. (1994)
  140. a b Spina E, et al. A role of nitric oxide in WIN 55,212-2 tolerance in miceEur J Pharmacol. (1998)
  141. a b Molderings GJ, et al. Presynaptic imidazoline receptors and non-adrenoceptor {3H}-idazoxan binding sites in human cardiovascular tissuesBr J Pharmacol. (1997)
  142. ^ Wong CS, et al. Effects of NMDA receptor antagonists on inhibition of morphine tolerance in rats: binding at mu-opioid receptorsEur J Pharmacol. (1996)
  143. a b Li J, et al. Effects of agmatine on tolerance to and substance dependence on morphine in miceZhongguo Yao Li Xue Bao. (1999)
  144. a b Kolesnikov Y, Jain S, Pasternak GW. Modulation of opioid analgesia by agmatineEur J Pharmacol. (1996)
  145. ^ Yeşilyurt O, Uzbay IT. Agmatine potentiates the analgesic effect of morphine by an alpha(2)-adrenoceptor-mediated mechanism in miceNeuropsychopharmacology. (2001)
  146. ^ Bhalla S, Rapolaviciute V, Gulati A. Determination of α(2)-adrenoceptor and imidazoline receptor involvement in augmentation of morphine and oxycodone analgesia by agmatine and BMS182874Eur J Pharmacol. (2011)
  147. ^ Su RB, et al. Effects of intragastric agmatine on morphine-induced physiological dependence in beagle dogs and rhesus monkeysEur J Pharmacol. (2008)
  148. ^ Gold MS, Redmond DE Jr, Kleber HD. Clonidine blocks acute opiate-withdrawal symptomsLancet. (1978)
  149. ^ Kosten TA. Clonidine attenuates conditioned aversion produced by naloxone-precipitated opiate withdrawalEur J Pharmacol. (1994)
  150. ^ Maldonado R. Participation of noradrenergic pathways in the expression of opiate withdrawal: biochemical and pharmacological evidenceNeurosci Biobehav Rev. (1997)
  151. ^ Iglesias V, et al. Effects of yohimbine on morphine analgesia and physical dependence in the ratEur J Pharmacol. (1992)
  152. ^ Dwoskin LP, Neal BS, Sparber SB. Yohimbine exacerbates and clonidine attenuates acute morphine withdrawal in ratsEur J Pharmacol. (1983)
  153. ^ Wade CL, et al. Supraspinally-administered agmatine attenuates the development of oral fentanyl self-administrationEur J Pharmacol. (2008)
  154. a b Morgan AD, et al. Effects of agmatine on the escalation of intravenous cocaine and fentanyl self-administration in ratsPharmacol Biochem Behav. (2002)
  155. ^ Huston JP, et al. What’s conditioned in conditioned place preferenceTrends Pharmacol Sci. (2013)
  156. ^ Tahsili-Fahadan P, et al. Agmatine potentiates morphine-induced conditioned place preference in mice: modulation by alpha2-adrenoceptorsNeuropsychopharmacology. (2006)
  157. a b Yu Y, et al. A nonproton ligand sensor in the acid-sensing ion channelNeuron. (2010)
  158. a b c d Li WG, et al. ASIC3 channels integrate agmatine and multiple inflammatory signals through the nonproton ligand sensing domainMol Pain. (2010)
  159. a b Wemmie JA, Price MP, Welsh MJ. Acid-sensing ion channels: advances, questions and therapeutic opportunitiesTrends Neurosci. (2006)
  160. ^ Waldmann R, et al. A proton-gated cation channel involved in acid-sensingNature. (1997)
  161. ^ de Weille JR, et al. Identification, functional expression and chromosomal localisation of a sustained human proton-gated cation channelFEBS Lett. (1998)
  162. ^ Salinas M, Lazdunski M, Lingueglia E. Structural elements for the generation of sustained currents by the acid pain sensor ASIC3J Biol Chem. (2009)
  163. ^ Deval E, et al. ASIC3, a sensor of acidic and primary inflammatory painEMBO J. (2008)
  164. ^ Li WG, Xu TL. ASIC3 channels in multimodal sensory perceptionACS Chem Neurosci. (2011)
  165. ^ Zhang M, Wang H, Tracey KJ. Regulation of macrophage activation and inflammation by spermine: a new chapter in an old storyCrit Care Med. (2000)
  166. ^ Fairbanks CA, et al. Agmatine reverses pain induced by inflammation, neuropathy, and spinal cord injuryProc Natl Acad Sci U S A. (2000)
  167. ^ Su RB, Li J, Qin BY. A biphasic opioid function modulator: agmatineActa Pharmacol Sin. (2003)
  168. a b c Keynan O, et al. Safety and Efficacy of Dietary Agmatine Sulfate in Lumbar Disc-associated Radiculopathy. An Open-label, Dose-escalating Study Followed by a Randomized, Double-blind, Placebo-controlled TrialPain Med. (2010)
  169. ^ Buchhalter AR, Fant RV, Henningfield JE. Novel pharmacological approaches for treating tobacco dependence and withdrawal: current statusDrugs. (2008)
  170. ^ Gourlay S, et al. A placebo-controlled study of three clonidine doses for smoking cessationClin Pharmacol Ther. (1994)
  171. ^ Yamanaka K, Oshita M, Muramatsu I. Alteration of alpha and muscarinic receptors in rat brain and heart following chronic nicotine treatmentBrain Res. (1985)
  172. a b Kotagale NR, et al. Repeated agmatine treatment attenuates nicotine sensitization in mice: modulation by alpha2-adrenoceptorsBehav Brain Res. (2010)
  173. ^ Zaniewska M, et al. Effects of agmatine on nicotine-evoked behavioral responses in ratsPharmacol Rep. (2008)
  174. ^ Uzbay IT, et al. Effects of agmatine on ethanol withdrawal syndrome in ratsBehav Brain Res. (2000)
  175. a b c d e Taksande BG, et al. Agmatine, an endogenous imidazoline receptor ligand modulates ethanol anxiolysis and withdrawal anxiety in ratsEur J Pharmacol. (2010)
  176. ^ Littleton JM, et al. Role of polyamines and NMDA receptors in ethanol dependence and withdrawalAlcohol Clin Exp Res. (2001)
  177. ^ Gibson DA, et al. Polyamines contribute to ethanol withdrawal-induced neurotoxicity in rat hippocampal slice cultures through interactions with the NMDA receptorAlcohol Clin Exp Res. (2003)
  178. ^ Collins ED, et al. The effects of memantine on the subjective, reinforcing and cardiovascular effects of cocaine in humansBehav Pharmacol. (1998)
  179. ^ Collins ED, et al. The effects of acute pretreatment with high-dose memantine on the cardiovascular and behavioral effects of cocaine in humansExp Clin Psychopharmacol. (2007)
  180. ^ Rawls SM, et al. A nitric oxide synthase inhibitor (L-NAME) attenuates abstinence-induced withdrawal from both cocaine and a cannabinoid agonist (WIN 55212-2) in PlanariaBrain Res. (2006)
  181. a b Cantin L, et al. Cocaine is low on the value ladder of rats: possible evidence for resilience to addictionPLoS One. (2010)
  182. ^ Lenoir M, et al. Intense sweetness surpasses cocaine rewardPLoS One. (2007)
  183. a b c d Wang CC, et al. Beneficial effect of agmatine on brain apoptosis, astrogliosis, and edema after rat transient cerebral ischemiaBMC Pharmacol. (2010)
  184. a b Agmatine reduced the expressions of nitric oxide synthase and peroxynitrite formation in rat cerebral cortex after transient global cerebral ischemia.
  185. a b c Kim JH, et al. Agmatine attenuates brain edema through reducing the expression of aquaporin-1 after cerebral ischemiaJ Cereb Blood Flow Metab. (2010)
  186. a b c Lee WT, et al. Neuroprotective effects of agmatine on oxygen-glucose deprived primary-cultured astrocytes and nuclear translocation of nuclear factor-kappa BBrain Res. (2009)
  187. ^ Kim JH, et al. Agmatine reduces infarct area in a mouse model of transient focal cerebral ischemia and protects cultured neurons from ischemia-like injuryExp Neurol. (2004)
  188. a b c Feng Y, Piletz JE, Leblanc MH. Agmatine suppresses nitric oxide production and attenuates hypoxic-ischemic brain injury in neonatal ratsPediatr Res. (2002)
  189. ^ Iadecola C. Bright and dark sides of nitric oxide in ischemic brain injuryTrends Neurosci. (1997)
  190. ^ Moro MA, et al. Role of nitric oxide after brain ischaemiaCell Calcium. (2004)
  191. ^ Raghavan SA, Dikshit M. Vascular regulation by the L-arginine metabolites, nitric oxide and agmatinePharmacol Res. (2004)
  192. ^ Huang Z, et al. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthaseScience. (1994)
  193. ^ Mun CH, et al. Regulation of endothelial nitric oxide synthase by agmatine after transient global cerebral ischemia in rat brainAnat Cell Biol. (2010)
  194. ^ Ma T, et al. Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4J Clin Invest. (1997)
  195. ^ Manley GT, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic strokeNat Med. (2000)
  196. ^ Ribeiro Mde C, et al. Time course of aquaporin expression after transient focal cerebral ischemia in miceJ Neurosci Res. (2006)
  197. ^ Gilad GM, et al. Agmatine treatment is neuroprotective in rodent brain injury modelsLife Sci. (1996)
  198. ^ Panet H, et al. Activation of nuclear transcription factor kappa B (NF-kappaB) is essential for dopamine-induced apoptosis in PC12 cellsJ Neurochem. (2001)
  199. a b Seo SK, et al. Overexpression of human arginine decarboxylase rescues human mesenchymal stem cells against H₂O₂ toxicity through cell survival protein activationJ Korean Med Sci. (2013)
  200. a b c Santhanam AV, Viswanathan S, Dikshit M. Activation of protein kinase B/Akt and endothelial nitric oxide synthase mediates agmatine-induced endothelium-dependent relaxationEur J Pharmacol. (2007)
  201. ^ Li W, et al. An essential role for the Id1/PI3K/Akt/NFkB/survivin signalling pathway in promoting the proliferation of endothelial progenitor cells in vitroMol Cell Biochem. (2012)
  202. ^ Kanwar JR, Kamalapuram SK, Kanwar RK. Targeting survivin in cancer: the cell-signalling perspectiveDrug Discov Today. (2011)
  203. ^ Lin J, et al. Inhibitor of differentiation 1 contributes to head and neck squamous cell carcinoma survival via the NF-kappaB/survivin and phosphoinositide 3-kinase/Akt signaling pathwaysClin Cancer Res. (2010)
  204. ^ Young ND, Galston AW. Putrescine and Acid Stress : Induction of Arginine Decarboxylase Activity and Putrescine Accumulation by Low pHPlant Physiol. (1983)
  205. ^ Bliven KA, Fisher DJ, Maurelli AT. Characterization of the activity and expression of arginine decarboxylase in human and animal Chlamydia pathogensFEMS Microbiol Lett. (2012)
  206. ^ Pothipongsa A, Jantaro S, Incharoensakdi A. Polyamines induced by osmotic stress protect Synechocystis sp. PCC 6803 cells and arginine decarboxylase transcripts against UV-B radiationAppl Biochem Biotechnol. (2012)
  207. ^ Xu X, Shi G, Jia R. Changes of polyamine levels in roots of Sagittaria sagittifolia L. under copper stressEnviron Sci Pollut Res Int. (2011)
  208. a b Ruiz-Durántez E, et al. Effect of agmatine on locus coeruleus neuron activity: possible involvement of nitric oxideBr J Pharmacol. (2002)
  209. ^ Weiss JM, et al. Depression and anxiety: role of the locus coeruleus and corticotropin-releasing factorBrain Res Bull. (1994)
  210. a b Lavinsky D, Arteni NS, Netto CA. Agmatine induces anxiolysis in the elevated plus maze task in adult ratsBehav Brain Res. (2003)
  211. a b c d e Aricioglu F, Altunbas H. Is agmatine an endogenous anxiolytic/antidepressant agentAnn N Y Acad Sci. (2003)
  212. a b Gong ZH, et al. Anxiolytic effect of agmatine in rats and miceEur J Pharmacol. (2006)
  213. ^ Halaris A, Piletz JE. Relevance of imidazoline receptors and agmatine to psychiatry: a decade of progressAnn N Y Acad Sci. (2003)
  214. ^ Kaster MP, et al. Effects of potassium channel inhibitors in the forced swimming test: possible involvement of L-arginine-nitric oxide-soluble guanylate cyclase pathwayBehav Brain Res. (2005)
  215. ^ Zomkowski AD, Santos AR, Rodrigues AL. Evidence for the involvement of the opioid system in the agmatine antidepressant-like effect in the forced swimming testNeurosci Lett. (2005)
  216. a b c d Budni J, et al. Role of different types of potassium channels in the antidepressant-like effect of agmatine in the mouse forced swimming testEur J Pharmacol. (2007)
  217. ^ Fluoxetine inhibits A-type potassium currents in primary cultured rat hippocampal neurons.
  218. ^ Differential blockade of neuronal voltage-gated Na+ and K+ channels by antidepressant drugs.
  219. ^ Inhibition of G Protein-Activated Inwardly Rectifying K+ Channels by Phencyclidine.
  220. ^ Kobayashi T, Washiyama K, Ikeda K. Inhibition of G protein-activated inwardly rectifying K+ channels by various antidepressant drugsNeuropsychopharmacology. (2004)
  221. ^ Kaster MP, et al. The inhibition of different types of potassium channels underlies the antidepressant-like effect of adenosine in the mouse forced swimming testProg Neuropsychopharmacol Biol Psychiatry. (2007)
  222. ^ Budni J, et al. Role of potassium channels in the antidepressant-like effect of folic acid in the forced swimming test in micePharmacol Biochem Behav. (2012)
  223. ^ Redrobe JP, Pinot P, Bourin M. The effect of the potassium channel activator, cromakalim, on antidepressant drugs in the forced swimming test in miceFundam Clin Pharmacol. (1996)
  224. ^ Bortolatto CF, et al. Involvement of potassium channels in the antidepressant-like effect of venlafaxine in miceLife Sci. (2010)
  225. ^ Kelly JS, et al. Serotonin receptor heterogeneity and the role of potassium channels in neuronal excitabilityAdv Exp Med Biol. (1991)
  226. a b c Weng XC, et al. Agmatine blocked voltage-gated calcium channel in cultured rat hippocampal neuronsActa Pharmacol Sin. (2003)
  227. a b The clinical antidepressant effect of exogenous agmatine is not reversed by parachlorophenylalanine: a pilot study.
  228. ^ Pedrazzini T, Pralong F, Grouzmann E. Neuropeptide Y: the universal soldierCell Mol Life Sci. (2003)
  229. ^ Kask A, Rägo L, Harro J. Evidence for involvement of neuropeptide Y receptors in the regulation of food intake: studies with Y1-selective antagonist BIBP3226Br J Pharmacol. (1998)
  230. ^ Huguet F, et al. Age-related changes of noradrenergic-NPY interaction in rat brain: norepinephrine, NPY levels and alpha-adrenoceptorsBrain Res. (1993)
  231. ^ Sawchenko PE, et al. Colocalization of neuropeptide Y immunoreactivity in brainstem catecholaminergic neurons that project to the paraventricular nucleus of the hypothalamusJ Comp Neurol. (1985)
  232. ^ Everitt BJ, et al. Differential co-existence of neuropeptide Y (NPY)-like immunoreactivity with catecholamines in the central nervous system of the ratNeuroscience. (1984)
  233. ^ Franco-Cereceda A, et al. Differential effects of clonidine and reserpine treatment on neuropeptide Y content in some sympathetically innervated tissues of the guinea-pigEur J Pharmacol. (1987)
  234. ^ Smiałowska M, et al. Clonidine administration increases neuropeptide Y immunoreactivity and neuropeptide Y mRNA in the rat cerebral cortex neuronsNeuropeptides. (1997)
  235. ^ Clark JT, et al. Alpha 2-adrenoceptor blockade attenuates feeding behavior induced by neuropeptide Y and epinephrinePhysiol Behav. (1988)
  236. ^ Heilig M, Wahlestedt C, Widerlöv E. Neuropeptide Y (NPY)-induced suppression of activity in the rat: evidence for NPY receptor heterogeneity and for interaction with alpha-adrenoceptorsEur J Pharmacol. (1988)
  237. ^ Prasad A, Prasad C. Agmatine enhances caloric intake and dietary carbohydrate preference in satiated ratsPhysiol Behav. (1996)
  238. a b Seo S, Liu P, Leitch B. Spatial learning-induced accumulation of agmatine and glutamate at hippocampal CA1 synaptic terminalsNeuroscience. (2011)
  239. a b Betancourt L, et al. In vivo monitoring of cerebral agmatine by microdialysis and capillary electrophoresisJ Chromatogr B Analyt Technol Biomed Life Sci. (2012)
  240. a b Liu P, et al. Spatial learning results in elevated agmatine levels in the rat brainHippocampus. (2008)
  241. ^ Leitch B, et al. Spatial learning-induced increase in agmatine levels at hippocampal CA1 synapsesSynapse. (2011)
  242. a b c Rushaidhi M, et al. Participation of hippocampal agmatine in spatial learning: an in vivo microdialysis studyNeuropharmacology. (2013)
  243. ^ Wang ZM, et al. Effects of agmatine on neuronal discharges in rat hippocampal CA1 areaSheng Li Xue Bao. (2003)
  244. a b Liu P, et al. Memory-related changes in L-citrulline and agmatine in the rat brainHippocampus. (2009)
  245. a b c d Arteni NS, et al. Agmatine facilitates memory of an inhibitory avoidance task in adult ratsNeurobiol Learn Mem. (2002)
  246. a b Zhou HC, et al. Activation of β2-adrenoceptor enhances synaptic potentiation and behavioral memory via cAMP-PKA signaling in the medial prefrontal cortex of ratsLearn Mem. (2013)
  247. a b Dalley JW, Cardinal RN, Robbins TW. Prefrontal executive and cognitive functions in rodents: neural and neurochemical substratesNeurosci Biobehav Rev. (2004)
  248. a b Gaffan D, Parker A. Interaction of perirhinal cortex with the fornix-fimbria: memory for objects and “object-in-place” memoryJ Neurosci. (1996)
  249. ^ Riccio A, et al. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neuronsScience. (1999)
  250. ^ Du K, Montminy M. CREB is a regulatory target for the protein kinase Akt/PKBJ Biol Chem. (1998)
  251. ^ Chen X, et al. Ischemic rat brain extracts induce human marrow stromal cell growth factor productionNeuropathology. (2002)
  252. ^ Lu Y, Christian K, Lu B. BDNF: a key regulator for protein synthesis-dependent LTP and long-term memoryNeurobiol Learn Mem. (2008)
  253. ^ Collingridge GL, Bliss TV. Memories of NMDA receptors and LTPTrends Neurosci. (1995)
  254. ^ Cain DP. LTP, NMDA, genes and learningCurr Opin Neurobiol. (1997)
  255. ^ Hawkins RD, Son H, Arancio O. Nitric oxide as a retrograde messenger during long-term potentiation in hippocampusProg Brain Res. (1998)
  256. ^ Yananli H, et al. Effect of agmatine on brain L-citrulline production during morphine withdrawal in rats: a microdialysis study in nucleus accumbensBrain Res. (2007)
  257. ^ Rastegar K, et al. The Effect of Intra-CA1 Agmatine Microinjection on Water Maze Learning and Memory in RatIran Red Crescent Med J. (2011)
  258. a b Stewart LS, McKay BE. Acquisition deficit and time-dependent retrograde amnesia for contextual fear conditioning in agmatine-treated ratsBehav Pharmacol. (2000)
  259. a b McKay BE, et al. Learning and memory in agmatine-treated ratsPharmacol Biochem Behav. (2002)
  260. a b c d Rushaidhi M, et al. Agmatine selectively improves behavioural function in aged male Sprague-Dawley ratsNeuroscience. (2012)
  261. a b c Liu P, et al. Behavioral effects of intracerebroventricular microinfusion of agmatine in adult ratsBehav Neurosci. (2008)
  262. ^ Liu P, Collie ND. Behavioral effects of agmatine in naive rats are task- and delay-dependentNeuroscience. (2009)
  263. ^ Szabó C. Physiological and pathophysiological roles of nitric oxide in the central nervous systemBrain Res Bull. (1996)
  264. a b c Demehri S, et al. Agmatine exerts anticonvulsant effect in mice: modulation by alpha 2-adrenoceptors and nitric oxideNeuropharmacology. (2003)
  265. a b c Bence AK, et al. An in vivo evaluation of the antiseizure activity and acute neurotoxicity of agmatinePharmacol Biochem Behav. (2003)
  266. a b Luszczki JJ, et al. Agmatine enhances the anticonvulsant action of phenobarbital and valproate in the mouse maximal electroshock seizure modelJ Neural Transm. (2008)
  267. ^ Anticonvulsive effect of agmatine in mice.
  268. ^ Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum.
  269. ^ Garthwaite J, Charles SL, Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brainNature. (1988)
  270. ^ Schoemaker H. Polyamines allosterically modulate {3H}nitrendipine binding to the voltage-sensitive calcium channel in rat brainEur J Pharmacol. (1992)
  271. ^ Jeong SY, et al. Nitric oxide directly activates large conductance Ca2+-activated K+ channels (rSlo)Mol Cells. (2001)
  272. ^ Shin JH, et al. Nitric oxide directly activates calcium-activated potassium channels from rat brain reconstituted into planar lipid bilayerFEBS Lett. (1997)
  273. ^ Denninger JW, Marletta MA. Guanylate cyclase and the .NO/cGMP signaling pathwayBiochim Biophys Acta. (1999)
  274. a b Bhutada P, et al. Agmatine, an endogenous ligand of imidazoline receptor protects against memory impairment and biochemical alterations in streptozotocin-induced diabetic ratsProg Neuropsychopharmacol Biol Psychiatry. (2012)
  275. a b c d e f g Hwang SL, et al. Activation of imidazoline receptors in adrenal gland to lower plasma glucose in streptozotocin-induced diabetic ratsDiabetologia. (2005)
  276. ^ Bergin DH, Liu P. Agmatine protects against beta-amyloid25-35-induced memory impairments in the ratNeuroscience. (2010)
  277. ^ Matheus FC, et al. Neuroprotective effects of agmatine in mice infused with a single intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)Behav Brain Res. (2012)
  278. ^ Moosavi M, et al. Agmatine protects against scopolamine-induced water maze performance impairment and hippocampal ERK and Akt inactivationNeuropharmacology. (2012)
  279. ^ Utkan T, et al. Agmatine, a metabolite of L-arginine, reverses scopolamine-induced learning and memory impairment in ratsPharmacol Biochem Behav. (2012)
  280. ^ Zarifkar A, et al. Agmatine prevents LPS-induced spatial memory impairment and hippocampal apoptosisEur J Pharmacol. (2010)
  281. ^ Ahn SK, et al. Protective effects of agmatine on lipopolysaccharide-injured microglia and inducible nitric oxide synthase activityLife Sci. (2012)
  282. a b Kohl S, et al. Prepulse inhibition in psychiatric disorders–apart from schizophreniaJ Psychiatr Res. (2013)
  283. ^ Geyer MA, et al. Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in reviewPsychopharmacology (Berl). (2001)
  284. ^ Giakoumaki SG. Cognitive and prepulse inhibition deficits in psychometrically high schizotypal subjects in the general population: relevance to schizophrenia researchJ Int Neuropsychol Soc. (2012)
  285. a b Uzbay T, et al. Agmatine disrupts prepulse inhibition of acoustic startle reflex in ratsJ Psychopharmacol. (2010)
  286. ^ Pålsson E, et al. Agmatine attenuates the disruptive effects of phencyclidine on prepulse inhibitionEur J Pharmacol. (2008)
  287. ^ Kotagale NR, et al. Psychopharmacological study of agmatine in behavioral tests of schizophrenia in rodentsPharmacol Biochem Behav. (2012)
  288. ^ Liu P, et al. Age-related changes in nitric oxide synthase and arginase in the rat prefrontal cortexNeurobiol Aging. (2004)
  289. ^ Liu P, et al. Effects of aging on agmatine levels in memory-associated brain structuresHippocampus. (2008)
  290. ^ Liu P, et al. Age-related changes in polyamines in memory-associated brain structures in ratsNeuroscience. (2008)
  291. ^ Gupta N, et al. Ageing alters behavioural function and brain arginine metabolism in male Sprague-Dawley ratsNeuroscience. (2012)
  292. ^ Liu P, et al. Potential involvement of NOS and arginase in age-related behavioural impairmentsExp Gerontol. (2004)
  293. ^ Liu P, et al. Hippocampal nitric oxide synthase and arginase and age-associated behavioral deficitsHippocampus. (2005)
  294. ^ Rushaidhi M, Zhang H, Liu P. Effects of prolonged agmatine treatment in aged male Sprague-Dawley ratsNeuroscience. (2013)
  295. a b c d e f Joshi MS, et al. Receptor-mediated activation of nitric oxide synthesis by arginine in endothelial cellsProc Natl Acad Sci U S A. (2007)
  296. a b Haulică I, et al. Preliminary research on possible relationship of NO with agmatine at the vascular levelRom J Physiol. (1999)
  297. a b c d e Schwartz D, et al. Agmatine affects glomerular filtration via a nitric oxide synthase-dependent mechanismAm J Physiol. (1997)
  298. ^ Fill M, Copello JA. Ryanodine receptor calcium release channelsPhysiol Rev. (2002)
  299. ^ Nitric Oxide-induced Mobilization of Intracellular Calcium via the Cyclic ADP-ribose Signaling Pathway.
  300. ^ Stoyanovsky D, et al. Nitric oxide activates skeletal and cardiac ryanodine receptorsCell Calcium. (1997)
  301. ^ Galione A, Lee HC, Busa WB. Ca(2+)-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-riboseScience. (1991)
  302. ^ Lee HC, Galione A, Walseth TF. Cyclic ADP-ribose: metabolism and calcium mobilizing functionVitam Horm. (1994)
  303. a b c d e Satriano J, et al. Effects on kidney filtration rate by agmatine requires activation of ryanodine channels for nitric oxide generationAm J Physiol Renal Physiol. (2008)
  304. ^ Jagnandan D, Sessa WC, Fulton D. Intracellular location regulates calcium-calmodulin-dependent activation of organelle-restricted eNOSAm J Physiol Cell Physiol. (2005)
  305. ^ Liou SF, et al. The vasorelaxing action of labedipinedilol-A involves endothelial cell-derived NO and eNOS expression caused by calcium influxJ Cardiovasc Pharmacol. (2005)
  306. ^ eNOS at a glance.
  307. ^ Kakizawa S, Yamazawa T, Iino M. Nitric oxide-induced calcium release: activation of type 1 ryanodine receptor by endogenous nitric oxideChannels (Austin). (2013)
  308. ^ Chen CT, et al. Activation of imidazoline I-2B receptor by metformin to increase glucose uptake in skeletal muscleHorm Metab Res. (2011)
  309. ^ Yamboliev IA, Mutafova-Yambolieva VN. PI3K and PKC contribute to membrane depolarization mediated by alpha2-adrenoceptors in the canine isolated mesenteric veinBMC Physiol. (2005)
  310. ^ Lu XL, et al. Marine cyclotripeptide X-13 promotes angiogenesis in zebrafish and human endothelial cells via PI3K/Akt/eNOS signaling pathwaysMar Drugs. (2012)
  311. ^ Shi F, et al. Effects of simulated microgravity on human umbilical vein endothelial cell angiogenesis and role of the PI3K-Akt-eNOS signal pathwayPLoS One. (2012)
  312. ^ Jung HJ, et al. Agmatine promotes the migration of murine brain endothelial cells via multiple signaling pathwaysLife Sci. (2013)
  313. a b Auguet M, et al. Selective inhibition of inducible nitric oxide synthase by agmatineJpn J Pharmacol. (1995)
  314. ^ Jianmongkol S, et al. Aminoguanidine-mediated inactivation and alteration of neuronal nitric-oxide synthaseJ Biol Chem. (2000)
  315. ^ Wolff DJ, Lubeskie A. Aminoguanidine is an isoform-selective, mechanism-based inactivator of nitric oxide synthaseArch Biochem Biophys. (1995)
  316. ^ Nakatsuka M, Nakatsuka K, Osawa Y. Metabolism-based inactivation of penile nitric oxide synthase activity by guanabenzDrug Metab Dispos. (1998)
  317. ^ Li Q, et al. Effect of agmatine on intracellular free calcium concentration in isolated rat ventricular myocytesSheng Li Xue Bao. (2002)
  318. ^ Li Q, Yin JX, He RR. Effect of agmatine on L-type calcium current in rat ventricular myocytesActa Pharmacol Sin. (2002)
  319. a b c d Lortie MJ, et al. Agmatine, a bioactive metabolite of arginine. Production, degradation, and functional effects in the kidney of the ratJ Clin Invest. (1996)
  320. ^ Gao Y, et al. Agmatine: a novel endogenous vasodilator substanceLife Sci. (1995)
  321. ^ Ishikawa T, et al. N omega-hydroxyagmatine: a novel substance causing endothelium-dependent vasorelaxationBiochem Biophys Res Commun. (1995)
  322. ^ Gill F, et al. Effects of agmatine on the survival rate in rats bled to hemorrhageArzneimittelforschung. (2011)
  323. ^ Ernsberger P, et al. Hypotensive action of clonidine analogues correlates with binding affinity at imidazole and not alpha-2-adrenergic receptors in the rostral ventrolateral medullaJ Hypertens Suppl. (1988)
  324. ^ Ernsberger P, et al. Role of imidazole receptors in the vasodepressor response to clonidine analogs in the rostral ventrolateral medullaJ Pharmacol Exp Ther. (1990)
  325. ^ Jou SB, Liu IM, Cheng JT. Activation of imidazoline receptor by agmatine to lower plasma glucose in streptozotocin-induced diabetic ratsNeurosci Lett. (2004)
  326. ^ Schäfer U, et al. Effects of agmatine on the cardiovascular system of spontaneously hypertensive ratsAnn N Y Acad Sci. (1999)
  327. ^ Sun MK, Regunathan S, Reis DJ. Cardiovascular responses to agmatine, a clonidine-displacing substance, in anesthetized ratClin Exp Hypertens. (1995)
  328. ^ Khan S, et al. Beta-endorphin decreases fatigue and increases glucose uptake independently in normal and dystrophic miceMuscle Nerve. (2005)
  329. ^ Cheng JT, et al. Plasma glucose-lowering effect of beta-endorphin in streptozotocin-induced diabetic ratsHorm Metab Res. (2002)
  330. a b Evans AA, Khan S, Smith ME. Evidence for a hormonal action of beta-endorphin to increase glucose uptake in resting and contracting skeletal muscleJ Endocrinol. (1997)
  331. ^ Radosevich PM, et al. Beta-endorphin inhibits glucose production in the conscious dogJ Clin Invest. (1984)
  332. ^ Curry DL, Bennett LL, Li CH. Stimulation of insulin secretion by beta-endorphins (1-27 & 1-31)Life Sci. (1987)
  333. ^ Hauner H, et al. Endogenous opiates do not influence glucose and lipid metabolism in rat adipocytesExp Clin Endocrinol. (1988)
  334. ^ Kalra SP, et al. Agmatine, a novel hypothalamic amine, stimulates pituitary luteinizing hormone release in vivo and hypothalamic luteinizing hormone-releasing hormone release in vitroNeurosci Lett. (1995)
  335. ^ Hong S, et al. Agmatine protects retinal ganglion cells from hypoxia-induced apoptosis in transformed rat retinal ganglion cell lineBMC Neurosci. (2007)
  336. ^ Hong S, et al. Ocular hypotensive effects of topically administered agmatine in a chronic ocular hypertensive rat modelExp Eye Res. (2010)
  337. ^ Hong S, et al. Retinal protective effects of topically administered agmatine on ischemic ocular injury caused by transient occlusion of the ophthalmic arteryBraz J Med Biol Res. (2012)
  338. ^ Al Masri AA, El Eter E. Agmatine induces gastric protection against ischemic injury by reducing vascular permeability in ratsWorld J Gastroenterol. (2012)
  339. a b Utkan T, et al. Investigation on the mechanism involved in the effects of agmatine on ethanol-induced gastric mucosal injury in ratsLife Sci. (2000)
  340. ^ Glavin GB, Smyth DD. Effects of the selective I1 imidazoline receptor agonist, moxonidine, on gastric secretion and gastric mucosal injury in ratsBr J Pharmacol. (1995)
  341. ^ Glavin GB, Carlisle MA, Smyth DD. Agmatine, an endogenous imidazoline receptor agonist, increases gastric secretion and worsens experimental gastric mucosal injury in ratsJ Pharmacol Exp Ther. (1995)
  342. ^ Zádori ZS, et al. Imidazoline versus alpha2-adrenoceptors in the control of gastric motility in miceEur J Pharmacol. (2013)
  343. ^ Molderings GJ, et al. Potential relevance of agmatine as a virulence factor of Helicobacter pyloriDig Dis Sci. (1999)
  344. ^ Bidet M, et al. Video microscopy of intracellular pH in primary cultures of rabbit proximal and early distal tubulesPflugers Arch. (1990)
  345. a b Jurkiewicz NH, et al. Functional properties of agmatine in rat vas deferensEur J Pharmacol. (1996)
  346. a b Santos WC, et al. Dual effect of agmatine in the bisected rat vas deferensJ Pharm Pharmacol. (2003)
  347. ^ Presta A, et al. Substrate binding and calmodulin binding to endothelial nitric oxide synthase coregulate its enzymatic activityNitric Oxide. (1997)
  348. ^ Aglawe MM, et al. Participation of central imidazoline binding sites in antinociceptive effect of ethanol and nicotine in ratsFundam Clin Pharmacol. (2013)
  349. ^ Ozden O, et al. Agmatine blocks ethanol-induced locomotor hyperactivity in male miceEur J Pharmacol. (2011)
  350. ^ Sameer SM, Chakraborty SS, Ugale RR. Agmatine attenuates acquisition but not the expression of ethanol conditioned place preference in mice: a role for imidazoline receptorsBehav Pharmacol. (2013)
  351. ^ Uzbay T, et al. Sex-related effects of agmatine on caffeine-induced locomotor activity in Swiss Webster miceEur J Pharmacol. (2010)
  352. ^ MATERIAL SAFETY DATA SHEET Agmatine.